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Estimation error of spectral parameters of mesosphere-stratosphere-troposphere
radars obtained by least squares fitting method and its lower bound
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We have calculated the estimation error of parameters of echoe power spectra observed by
mesosphere-stratosphere-troposphere (MST) radars by means of computer simulations for least
squares fitting and moment methods. The least squares fitting method is shown to be better than the
moment method in the region with low signal-to-noise ratio (snr), especially for narrow spectra.
However, the estimation error of the fitting method at infinite snr is approximately twice that of the
moment method. This has been attributed to the nature of the statistical fluctuation of the power
spectral density, which shows a y? distribution. For both methods at infinite snr we have derived
equations which show the accuracy of the estimates versus observation period and spectral width.
When we use the fitting method for the data observed with the MU radar (46.5 MHz), the typical
errors of the radial wind velocities are 0.7 and 2.0 m s~ ! in the stratosphere and in the mesosphere,
respectively. By calculating the logarithm of the spectrum with inifite snr and fitting a parabolic curve
to it, the error of the Doppler shift has become approximately 20 times smaller than that of the
moment method. It has been shown that this is one technique to achieve the theoretical lower bound of
the estimates.

[. INTRODUCTION
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In mesosphere-stratosphere-troposphere  (MST) ;

radar observations there are several techniques to

estimate parameters such as echo power, radial wind fi=
velocity, and spectral width. For the return signal of

MST radars we can assume that a power spectrum of

the radar returns shows a Gaussian distribution o? =
which is described as follows [¢.g., Woodman, 1985]:
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Another technique is a least squares fitting method.
P A Gaussian spectrum is fitted to the observed one so
=|——0 [exp [—(f —f)*/26° 1 p &
oL [(2:1)“1 ] pL-U~10/2] M as to minimize the squared sum of the residual

where f is frequency and P, f;, and ¢ are echo power, , g 2
mean Doppler shift, and spectral width, respectively. g = ;1 [SUD — SUe; P o 0] ()
One of the techniques to determine these parame- "

ters is a moment method. The zeroth, first, and
second moments of the spectral density correspond
to the echo power, mean Doppler shift, and spectral
width, respectively. For an observed spectrum S'(f)
obtained at M discrete frequencies f;,

by changing the parameters P, f;, and o. The spectral
parameters may also be estimated from the auto-
correlation function of the time series of the radar
returns. The radial velocity is estimated from the
phase angle of the autocorrelation function at the
first lag [e.g., Woodman and Guillén, 1974]. Sate and
Woodman [1982] applied a least squares fitting tech-
_ nique to the autocorrelation at multiple delays when
'Now at'Wave -Pl:opag.alion Laboratory, National Qceanic and radar returns consist of a component from fading
Atmospheric Administration, Boulder, Colorado. ground clutter together with the turbulence echo.

Copyright 1988 by the American Geophysical Union. The performance of many estimators were com-
Paper number 88RS03078. pared by Zrnié¢ [1979] and Woodman [1985], and the
0048-6604/38/88RS-03078508.00 performance of the pulse pair method was shown to
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Fig. 1. An example of (a) Gaussian spectrum, (b} statistical
fluctuation, and (c) model spectrum utilized in the computer simu-
lation, Frequency F is normalized by the frequency interval be-
tween the discrete spectral components. Signal-to-noise ratio,
spectral width, number of incoherent integrations, and noise level
of the model spectrum are Sy, =1, W=10, n=35, and Py =1,
respectively.

be better than that of the moment method at low
signal-to-noise ratio (snr) although they are the same
at infinite snr. Zrni¢ [1979] also showed the theoreti-
cal minimum estimation error (Cramer-Rao bound)
of spectral parameters which is obtained by maxi-
mum likelihood (ML) estimators. However, there are
no theoretical calculations for the performance of the
fitting method, which may be expected to show
better results in comparison to other techniques, es-
pecially in the region with low snr.

The MU radar (35°N, 136°E), which has been op-
erated since 1983, is a monostatic pulse Doppler
radar with a carrier frequency of 46.5 MHz [Kato et
al., 1984; Fukao et al., 19854, b]. The received signal
is transformed to Doppler power spectra by using the
fast Fourier transform (FFT) procedure. For parame-
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ter estimation the fitting method is utilized in almost
all of the MU radar observations. In this paper we
discuss the performance of the fitting method by
using the computer simulation technique and com-
pare it with the moment method. We also investigate
problems which may occur with the fitting method
when it is applied to the power spectrum of a
random process and show a possibility to improve
the performance of the fitting method and to ap-
proach the Cramer-Rao bound,

2. MODEL SPECTRUM AND COMPUTER
SIMULATION TECHNIQUE

As shown in Figure la, we have calculated a power
spectral density of S(f) + P, at 128 discrete fre-
quencies f;, where P, is noise level density. For con-
venience the Doppler shift f; is assumed to be zero.
Theé snr is defined as the power ratio between the
signal and the noise as follows:

SN:P/MPN (6)

where M = 128 is the number of discrete frequencies.
In the following sections we use normalized fre-
guency and spectral width

F =fiAf {7
W = a/Af {8}

where Af is a frequency interval between the discrete
spectral components.

The output of the receiver, which is a time series of
data, is a random process with a Gaussian distri-
bution. Because the Fourier transform is a linear
transformation and power spectral density is a
squared sum of both real and imaginary parts of the
spectral component, the power spectral density has a
statistical fluctuation with a 2 distribution [e.g,
Bendat and Piersol, 1971]. The statistical fluctuation
of the spectrum is simulated by generating random
numbers with ¥? distribution as shown in Figure 15.
The model power spectrum is calculated as a product
of the Gaussian spectrum and the statistical fluctu-
ation (Figure l¢). The amplitude of the statistical
fluctuation can be reduced by averaging successive
power spectra, which is called incoherent integration.
The standard deviation of the model spectrum is pro-
portional to the spectral density itself and is equal to
S(fi)/\/;, where n is the number of the incoherent
integration. The fluctuation shown in Figure 15 cor-
responds to n = 5. It should be noted that the model
spectrum does not include the effects of a windowing
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Fig. 2. Distribution of 500 Doppler shift F, estimates ob-
tained by the fitting method. The simulation condition is Sy— o0,
W = 3, and n = 5. Solid curve corresponds to the Gaussian distri-
bution with the bias and standard deviation of the estimated F,

function, which may bias the spectral width esti-
mates, especially for narrow spectra.

Spectral parameters are estimated for each spec-
trum by using both the moment and the least squares
fitting method. First, the generated spectrum is
smoothed by using a numerical low-pass filter with a
—3-dB cutoff period of 20Af. We find the frequency

. point with the largest spectral density in the
smoothed spectrum, which is used as the first guess
of the Doppler shift. The low-pass filter consists of a
running mean with the von Hann window. The
goodness of the initial guess depends largely on the
shape of the window function, especially for poor snr.
The von Hann window used here gives substantially
better estimates than simple boxcar or triangular
windows. After subtracting the real Py from the orig-
inal spectrum, we have applied both techniques to 64
spectral points around the first guess.

An additional difference between the two tech-
niques is that we have used all spectral points above
and below the noise level in the fitting method,
whereas only positive spectral points are used in the
moment method. The smoothed curve in Figure lc is
an example of the spectrum estimated by the fitting
method. Tt should be noted that the performance of
both the fitting and the moment methods relies on
the goodness of the initial guess of the Doppler shift.
Actually, the low-pass filter operation involved in de-
riving the initial guess takes more computer time
than the fitting or the moment method themselves.

In order to obtain.the estimation errors of parame-
ters, we have calculated 500 model spectra and ob-
tained the bias and variance of the estimates. Figure
2 shows a distribution of the Doppler shift deter-
mined by the fitting method. We use a normalized
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Doppler shift F,=f,/Af in this figure. The solid
curve is a Gaussian distribution which has a bias b,
and variance o2 of F,. Because the number of sam-
ples is large enough, the distribution is close to Gaus-
sian. We define the estimation error of the Doppler
shift, E, as follows:

Ep = (o} + b ®)

This is called the “rms (root mean square) error”
[Bendat and Piersol, 1971]. Eg is 0.51 in this case.
Estimation errors of the spectral width and the
echo power are also defined in the same way as
shown in (9) and are represented by Ey and Ep,
respectively. E, is normalized by Af, which is the
same procedure as for Ep. On the other hand, Ep is
described as the ratio to the true echo power P.

3. ESTIMATION ERROR AT FINITE
SIGNAL-TO-NOISE RATIO

Figure 3 shows E for both the fitting and moment
methods versus S, when n=235. This case corre-
sponds to the estimation error when we averaged five
spectra and then applied both methods. When
W = 2 for the fitting method, Ep is 0.44 in the region
with large Sy. The fitting is successful at Sy > 1074,
but we recognize a rapid increase of Ep below this
level. The wider spectrum causes a larger estimation
error of the Doppler shift; e.g., Ep = 0.91 for W = 10
at Sy = 10* However, Ej starts increasing at a simi-
lar Sy to that for W = 2. It is noted that estimation
errors are almost constant with Sy above this level.
Comparison of the results with that of the moment
method shows that at high S, the estimation error of
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Fig. 3. Variation of the estimation error of the Doppler shift
versus signal-to-noise ratio for n = 5. Circles and crosses show
results for W = 2 and W = 10, respectively. Solid and dashed lines
correspond to the errors obtained by the fitting and moment
methods, respectively.
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Fig. 4. The same as Figure 3, except for the estimation error of
the spectral width.

the moment method becomes less than that of the
fitting method; at S, = 10%, E. = 0.25 and 0.52 for
W =2 and 10, respectively. The estimation error of
the moment method is approximately 60% of the
fitting method in this region. As Sy decreases, the
estimation error of the moment method gradually
‘increases. The error of the moment method at
107! < Sy < 1 are almost the same as that of the
fitting method for W = 10 and worse for W =2,
There is no significant bias shown in the low-S,
region. Below Sy = 107!, both methods show a rapid
increase of the estimation error. The large error is
obtained because the numerical filter captures the
highest peak randomly distributed in the fluctuating
noise level and accepts it as the first guess of the
Doppler shift. When we assume a constant distri:
bution of E, within the spectral window of F = +64,
the standard deviation is approximately 37, which is
consistent with Ep at §y = 1072,

Figure 4 illustrates the estimation error of the
spectral width Eg . At large S, with W =2, E,, is
0.45 and 0.16 for the fitting and moment methods,
respectively. Better results by the moment method
are also obtained with W = 10. E; of the moment
method is about 40% of the fitting method. E, of
both methods does not decrease very much with in-
creasing Sy at Sy > 102 These results are similar to
those of the estimation etror of the Doppler velocity.
In the low-S region, W is well estimated for Sy > 1
by using the fitting method. The performance of the
moment method is not good at §,; < 10. E, of the
moment method is much worse than that of the fit-
ting method for W = 2, although Ej, of the moment
method for W = 10 is not larger than that of the
fitting method at any S. The increase of E in the
low-S, region for both methods is due to the larger
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bias. For the fitting method, around S, = 1072, the
estimated spectral width is smaller than the true
width, and W ~ 1 or 2. This is because the fitting
routine capturcs the major peak of the statistical
fluctuation and the estimated width is locked to the
width of the spikes in the fluctuating noise. On the
other hand, the spectral width obtained by the
moment method is larger than the true width, be-
cause the distribution of the spectral density becomes
close to the uniform distribution in the spectral
points used in the caiculation.

As shown in Figure 5, the relative estimation error
of the echo power has a different nature from E, or
Ey. When S, > 1, the results obtained by both
methods are close and almost constant with increas-
ing Sy. Ep is better for larger W. In the high-S,
region the relative estimation errors are approxi-
mately 17 and 8% of the true P when W is 2 and 10,
respectively. This is because we can average more
independent spectral points for the wide spectrum
than for the narrow spectrum.

Comparison of the results obtained by the fitting
and moment methods shows that the performance of
the moment method is better than the fitting method
at high Sy. At Sy < 1, on the other hand, E,, of the
fitting method is smaller than that of the moment
method for W =2, E; of the fitting method also
shows slightly better results for the narrow spectrum
in the low-Sy region. As cited above, large E;; of the
moment method at low Sy is due to the large bias,
which is determined by the number of spectral points
used in the calculation. E, of the moment method
can be improved by selecting the spectral points dif-
ferently. However, we need to know the range of the
spectral width prior to the calculation. The fitting
method is less sensitive to the number of the spectral
points and is the safer estimator for the spectral
width,
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Fig. 5. The same as Figure 3, except for the estimation error of
the echo power.
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Fig. 6. Estimation error of the Doppler shift versus numiber of
incoherent integration of the spectra at inifite §,. Triangles, cir-
cles, and crosses correspond to W =1, W =3, and W = 10, re-
spectively. Solid and dashed lines correspond to the errors for the
fitting and moment methods, respectively.

4. ESTIMATION ERROR AT INFINITE
SIGNAL-TO-NOISE RATIO

Since the estimation errors of parameters do not
vary much according to S, for high-S, cases, the
estimation error at infinite Sy is a good index for the
errors in real observations. Figure 6 shows the esti-
mation error of the Doppler velocity versus number
of incoherent integrations of the spectra. The esti-
mation error of the Doppler shift is almost pro-
portional to ﬁ and inversely proportional to \/;
For the spectral width, as illustrated in Figure 7, the
response of Ey, to n and W is the same as that for the
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Fig. 7. The same as Figure 6, except for the estimation error of
the spectral width.

TABLE 1. Coefficient & of (10) for Estimation Errors of
Normalized Doppler Shift and Spectral Width
Obtained Using Moment and Fitting Methods

Fitting Moment
F, 0.63 0.38
w 0.60 024

Doppler shift. At infinite S, the estimation error E of
either F, or W can be described as

E = (W /n)'? (10)

where k is a constant. By using the data shown in
Figures 6 and 7, we have determined the constant k
for both methods and spectral parameters, which are
listed in Table 1.

In order to determine the estimation error of the
radial wind velocity obtained by using both methods,
we put physical dimensions to the normalized esti-
mation error E;. The estimation error ¢, of radial
wind in the unit of meters per second is

&, = (¢/2fT)Ep = (A2T)Ep (1

where ¢ (meters per second), f (hertz), A (meters), and
T (seconds) arc the speed of light, the carrier fre-
quency of the radar, the wavelength of the radar, and
the length of the time series of the data, respectively.
The spectral width ¢, in the unit of meters per second
is also described as follows:

o, = (A2T)W (12)
By substituting (10) and (12) into (11),
&, = Klg,/T)'? (13)
where
K = k(3/2)'? (14)
is a constant and
T, =T (15)

is the total observation period to obtain a set of
spectral parameters. Equation (13) shows that if S is
infinite, the observation period is the only factor that
we can choose when we observe the radial velocity
by using the radar. The spectral width in this case
should contain all of the broadening effects such as
beam and shear broadening besides the spectral
broadening causing by the turbulence. We should
note that (13) is also valid for the estimation error of
the spectral width in the unit of meters per second.
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TABLE 2. Coefficient K of (14) for Estimation Errors of Radial
Wind Velocity and Spectral Width in the Unit of Meters per
Second Obtained Using Moment and Fitting Methods

Fitting Moment
Radial velocity L1 0.67
Spectral width 1.1 0.43

We have calculated the coefficients K for the esti-
mation errors expected in the MU radar observa-
tions by using k in Table 1 and A = 6.45 m (f, = 46.5
MHz) and show them in Table 2. When we observe
the radial wind velocity every | min by using the
fitting method, ¢,=0.12 m s! for ¢,=0.7 m s !
which is typical spectral width in the stratosphere,
and &, =020 m s~ ! for 6,=20 m s~! which is
typical in the mesosphere. For the moment method,
Zrpi¢ [1979] has theoretically calculated the esti-
mation error of both radial velocity and spectral
width, The theoretical formulas show that with the
MU radar and at infinite Sy, K = 0.68 and K = 0.41
for radial wind velocity and spectral width, respec-
tively. These values are consistent with those ob-
tained by the simulations.

We infer that the larger errors with the fitting
method occur because of the nature of the statistical
fluctuations of spectrai coefficients. Because the am-
plitudes of the statistical fluctuations are proportion-
al to the spectral density, components around the
spectral peak have larger fluctuations than the spec-
tral components with low spectral density. Thus the
sum of the squared residual is almost solely deter-
mined by the spectral components around the peak,
which implies that we actually use only a portion of
the spectrum when we estimate the parameters by
the fitting method.

5. LOWER BOUND OF THE SPECTRAL
PARAMETER ESTIMATION

In order to investigate the performance of both
methods at infinite Sy, we have calculated the nor-
malized residual of the estimated spectral density to
the model by subtracting the model spectra S'(F)
from the estimated spectra S(F; P, F,, W) as follows:

R(F) = (1/p)[S(F; P, F,, W) — S'(F)] (16)

where p is the true peak power density. For the re-
sults with the moment method we assume the Gaus-
sian spectrum with the estimated parameters and cal-
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culate R(F). The solid line in Figure 8 shows {R(F)>
for the fitting method, where { > shows an average
over 500 model spectra, and the model parameters
are Sy— 0, W =3 and n = 5. If the parameter esti-
mation is successful, {R(F)> should be zero at every
F. The expected statistical fluctuation of {(R(F)> is
2%, because the substantial number of incoherent
integration becomes 2500 when R(F) is averaged over
500 model spectra. We recognize a systematic vari-
ation of {R(F)) for the fitting method. The residual is
approximately 2.5% larger than the true speciral
density at F =0, and 4% smaller at F = +4. The
positive (R(F)> means that the estimated spectral
component is larger than the true one. Because the
residual is positive at the center and negative near
the shoulder of the initial spectrum, the specira are
estimated to be narrower than the real spectrum. A
small negative bias is found in the distribution of the
estimated W. The symmetrical nature of {(R(F)>
shows that there is no bias in the Doppler shift esti-
mates. The dashed line in Figure 8 shows {R(F)) for
the moment method, which is less than +29% at
every F. The amplitude of the fluctuation is less than
what is expected from purely statistical fluctuations.
The moment method does not show any significant
bias to spectral parameters.

The least squares fitting method gives maximum
likelihood (ML) estimates when the statistical fluctu-
ations of the samples at different frequency points are
uncorrelated and the samples at each frequency point
have Gaussian distribution with known variance
[e.g., Brandt, 1970]. The second condition is not sat-
isfied in the least squares fitting applied to the power
spectrum. We use a uniform weight for all spectral
components, although the variance of the spectral
components is proportional to the spectral density

<R(F)>
(=]
Q
o

-10 o 10 20
Frequency F

Fig. 8. Residual of the spectral coefficient estimates averaged
over 500 model spectra. Solid and dashed lines correspond to the
result for the fitting and moment methods, respectively.
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itself. Also, the statistical fluctuation shows the y?
distribution, Waldteufel [1976] has pointed out that
the least squares fitting for the radar Doppler spectra
does not yield the ML estimates. Figure 9 illustrates
an example of the estimated spectrum determined by
the fitting method. The model spectrum is normal-
ized by the true peak power density of the spectrum.
The x? distribution is not symmetrical with respect to
mean of the spectral coefficient and tends to have
larger spikes on the higher side in its distribution.
The spikes of the statistical fluctuations which
appear around the peak of the Gaussian spectrum
cause a large bias to the sum of the squared residual
and set the fitted spectrum higher at the center and
narrower than the true width. The estimation of the
Doppler shift is also affected by the positions of the
spikes.

Since the amplitude of the statistical fluctuation is
proportional to the spectral density itself, we can
equalize the amplitude of the statistical fluctuation
by taking the logarithm of the spectral density. The
variance of the samples at different frequency points
becomes constant, although its statistical distribution
is not Gaussian. When Sy— o0, we can estimate the
spectral parameters by fitting a parabolic curve to
log [S(F)] with a uniform weight. As shown by the
dashed line in Figure 9, the result of this method fits

Intensity

o
'S
I

-10 0 10 20
Frequency F

Fig. 9. Examples of the Gaussian spectrum estimates at Sy—
oo, W =3, and n = 5. The heavy solid line and the dashed line
show the results estimated by the fitting in the linear domain, and
the parabolic fitting in the logarithmic domain, respectively. The
light solid line shows the model spectrum normalized by the true
peak power density.
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Fig. 10. The same as Figure 6, except for the estimation error
of the Doppler shift obtained by the parabolic fitting in the loga-
rithmic domain. Dashed lines show the Cramer-Rao bound of the
ML estimator shown by Zrni¢ [1979].

the model spectrum much better than the fitting in
the linear domain in components with low spectral
density. We have simulated the estimation error of
the Doppler shift for this method. The result of this
parabolic fitting is shown in Figure 10. The esti-
mation error obtained by this methaed is, for example,
approximately 20 times less than that by the moment
method when W = 3. The dashed line is the theoreti-
cal lower bound (Cramer-Rao bound) obtained for
the expected error of the ML estimator [Zrnié,
1979]. The estimation error of the normalized Dop-
pler shift agrees very well with the Cramer-Rao
bound. The estimation error is inversely proportional
to ﬁ Also, we recognize that it is almost propor-
tional to W2, This is different from the ./W depen-
dence shown in (10) but agrees well with the theoreti-
cal formula given by Zrnié [1979]. The improvement
of the estimation error obtained by this fitting in the
logarithmic domain is larger for spectra with narrow
width than for spectra with larger width.

In theoretical evaluations of the accuracy of the
pulse pair or moment method, Doviek and Zrnié
[1984] and Woedman [1985] show the accuracy to
be comparable to the Cramer-Rao bound. This is
because they replaced the sampling interval by the
signal correlation time when they calculate the
Cramer-Rao bound. They have mentioned that a
sampling faster than the correlation time is re-
dundant and only introduces higher-frequency com-
ponents with small spectral density. However, for a
Gaussian spectrum with infinite S, every spectral
component should have significant information no
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matter how far the component is from the spectral
peak. This implies that we can arbitrarily increase
the number of independent points in the spsctrum
and improve the performance of estimators as much
as we wish. The performance of the moment and
fitting methods in the linear domain is restricted, be-
cause the equivalent number of effective spectral
components is limited around the spectral peak ac-
cording to the spectral width. The result clearly
shows that an infinite S, even very high frequency
components of the signal spectrum with very small
amplitude have substantial importance and can be
used to derive its spectral parameters. In the linear
domain, contributions from these components are
masked by the much larger fluctuations of the fre-
quency components around the peak. Our simulation
shows that the parabolic fitting in the logarithmic
domain is one technique to realize the lower bound
of the ML estimator by making use of such high-
frequency components. The detailed discussion of the
ML estimator for the Doppler spectra is given by
Waldteufel [1976]. Waldteufel showed a fitting
method to maximize the logarithm of the maximum
likelihood ratio itself.

The disadvantage of the parabolic fitting is in the
accuracy of the echo power estimation, The dashed
line in Figure 9 shows that the peak spectral density
is approximately 10% less than the true value, which
is a quite large error considering the excellent per-
formance in the estimation of the Doppler shift. This
underestimate comes from the fact that in estimating
the echo power, we are basically finding the mean in
the logarithmic domain. The mean in the logarithmic
domain corresponds to the geometric mean, which is
always less than or equal to the arithmetic mean in
the linear domain.

Also, this method is not realistic for real data with
finite Sy. As cited by Zrni¢ er al. [1977], the loga-
rithmic fit is better if spectra are free of artifacts.
However, the spectra are contaminated and distorted
by truncation distortion, aliasing effects, quantization
error, and so on. The estimation error of the noise
level will also affect the resuelt, However, if we pro-
duce a fitting routine for log [S(F)] which contains
these contaminations, it shouid show much better
performance than the existing methods.

6. CONCLUDING REMARKS

In this paper we have investigated the performance
of spectral parameter estimators by computer simula-
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tions. We have compared the performance of the fit-
ting and the moment methods. The comparison
showed that the moment method was better than the
fitting technique in the large-S, region. Also, we have
found that the fitting method shows the bias toward
slightly narrower spectral width estimates. Both the
poor performance and the spectral width bias of the
fitting method is attributed to the nature of the sta-
tistical fluctuations of the spectral estimates. Because
the amplitude of the statistical fluctuation is pro-
portional to the spectral density, parameters are de-
termined mainly by the spectral points around the
peak. However, the fitting technique showed better
results in the low-snr region, especially for the
narrow spectrum. In order to estimate the spectral
width in this region the fitting technique is the safer
estimator, because the spectral width obtained by the
moment method tends to show large positive bias to
the true width. The other advantage of the fitting
method over the moment method is that the set of
parameters is not limited to P, f;, and ¢. When the
spectral distribution is not Gaussian, or the spectra
are contaminated by other spectral components such
as the fading ground clutter, the fitting technique can
estimate spectral parameters without bias if the
model spectral function can be evaluated correctly
[Woodman, 1985].

In order to improve the estimation errors of the
spectral parameters we should use the moment
method when S, is large enough to produce better
results. We infer that this switching between both
methods is a good compromise for observations in
the stratosphere. For the mesospheric observation,
however, the fitting method shows an adequate per-
formance, because S is usually less than 10 in the
mesosphere with the MU radar.

As shown in section 5 the performance of both
fitting and moment methods is much worse than the
Cramer-Rao bound expected by using a ML esti-
mator. This is because they utilize only a restricted
portion of the spectral components around the peak
to determine spectral parameters. Although the
theory does not show the algorithm to derive the
best performance of the ML estimator, we could
obtain the minimum estimation error of the Doppler
shift in an ideal case by calculating the logarithm of
the model spectra and fitting a parabolic curve to
this. However, this technique is not realistic for the
spectra with finite §,, since the spectra show system-
atic distortions. It is possible to increase the per-
formance of the estimators by producing a fitting
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technique for log [S(f)] taking these distortions into
account.
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