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The received signal in through-transmission ultrasound measurements of cancellous bone consists of

two longitudinal waves, called the fast and slow waves. Analysis of these fast and slow waves may

reveal characteristics of the cancellous bone that would be good indicators of osteoporosis. Because

the two waves often overlap, decomposition of the received signal is an important problem in the

characterization of bone quality. This study proposes a fast and accurate decomposition method

based on the frequency domain interferometry imaging method with a modified wave transfer func-

tion that uses a phase rotation parameter. The proposed method accurately characterized the fast and

slow waves in the experimental study, and the residual intensity, which was normalized with respect

to the received signal intensity, was less than �20 dB over the bone specimen thickness range from

6 to 15 mm. In the simulation study, the residual intensity was less than �20 dB over the specimen

thickness range from 3 to 8 mm. Decomposition of a single received signal takes only 5 s using a lap-

top personal computer with a single central processing unit. The proposed method has great potential

to provide accurate and rapid measurements of indicators of osteoporosis in cancellous bone.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4916276]
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I. INTRODUCTION

Osteoporosis is a disease that is characterized by a

decrease in bone mass, leading to an increased possibility of

the risk of bone fracture. Dual x-ray absorptiometry is the

gold standard for osteoporosis diagnosis; however, diagnosis

using this method is based on only one parameter related to

bone porosity (Genant and Jiang, 2006; Blake and

Fogelman, 2007). Additional testing using another modality

may improve the accuracy of the diagnosis of osteoporosis.

Quantitative ultrasound (QUS) is one technique that

offers the potential to estimate the possibility of osteoporosis

without using ionizing radiation (Langton et al., 1984;

Laugier, 2008; Barkmann et al., 2008a,b). QUS measures

the speed of sound and the broadband ultrasonic attenuation

characteristics that provide important information for char-

acterization of bone quality and strength (Bouxsein et al.,
1995; Njeh et al., 1997; Han et al., 1997; Lochm€uller et al.,
1999; Ha€ıat et al., 2009). It has been established that the

received signal in through-transmission ultrasound measure-

ments of cancellous bone consists of the fast and slow waves

(Hosokawa and Otani, 1997, 1998; Hughes et al., 1999;

Kaczmarek et al., 2002; Cardoso et al., 2003; Fellah et al.,
2004). Several studies have reported that analysis of these

fast and slow waves may reveal the characteristics of cancel-

lous bone (Cardoso et al., 2003; Ha€ıat et al., 2007; Hughes

et al., 2007; Hosokawa, 2009; Mizuno et al., 2008; Mizuno

et al., 2009). Because the characteristics of cancellous bone

provide good indications of the bone changes caused by

osteoporosis (Njeh et al., 1999), fast and accurate characteri-

zation of the fast and slow waves may be important to the

realization of an osteoporosis screening method.

Analysis of the fast and slow waves requires decomposi-

tion of the received signal from cancellous bone into the fast

and slow waves. Because the two waves often overlap,

decomposition of the received signal is an important problem

in the characterization of bone quality using QUS. One pro-

posed strategy is the application of a Bayesian method using a

Markov chain Monte Carlo method with simulated annealing

(Marutyan et al., 2007; Anderson et al., 2010; Nelson et al.,
2011; Hoffman et al., 2012). The Bayesian decomposition

method succeeded in accurately characterizing the fast and

slow waves of a received signal from cancellous bone; how-

ever, this method involves a considerable computational load.

Other groups have reported fast decomposition methods

for characterization of the fast and slow waves. The space-

alternating generalized expectation-maximization method
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has been applied to signals that simulated the received signal

from a proximal femur (Dencks and Schmitz, 2013). Wear

reported that both the modified least squares Prony’s method

with curve fitting (Wear, 2013) and band-limited deconvolu-

tion (Wear, 2014) are suitable for rapid characterization of

the fast and slow waves. However, these fast decomposition

methods have only modest accuracy when compared with

that of the Bayesian decomposition method.

In the present study, we propose a fast decomposition

method based on frequency domain interferometry (FDI),

with decomposition accuracy that is similar to that of a

Bayesian method. We explain the methodology of the pro-

posed decomposition method, present experimental results,

and offer discussion and conclusions related to our findings.

II. METHODS

The proposed decomposition method requires no prior

information about the characteristics of a bone specimen,

e.g., the specimen thickness. The method uses a specific pa-

rameter set for the bone characteristics, and estimates the

specimen thickness as part of the decomposition process.

After decomposition, we can estimate the characteristics of

the bone specimen using its true thickness and the estimated

thickness. In this section, we explain the modified transfer

functions used for the fast and slow waves that satisfy the

Kramers–Kronig relations. We then describe the proposed

decomposition method based on the FDI imaging method.

A. Transfer functions for fast and slow waves

The wave propagation in cancellous bone has been mod-

eled in previous studies (Marutyan et al., 2006; Anderson

et al., 2008). The conventional propagation models are

expressed using the following formula:

SRðf Þ ¼ SIðf Þ½H1ðf Þ þ H2ðf Þ�; (1)

where SR(f) is a frequency component of the received signal

passing through a bone specimen in water at frequency f,
SI(f) is the same component passing through a water-only

path, and H1(f) and H2(f) are the transfer functions for the

fast and slow waves, respectively. Several researchers have

used a transfer model that assumes that the fast and slow

waves are propagating simultaneously through a medium

exhibiting linear-with-frequency attenuation (Nelson et al.,
2011; Wear, 2013, 2014). This model introduces the assump-

tion that the wavefront of an ultrasound wave passing

through a bone specimen in water is the same as that passing

through a water-only path. However, the heterogeneity of

cancellous bone causes complicated changes in the wave-

fronts as they pass. Because the ultrasound waves are typi-

cally received by a flat transducer, an uneven wavefront has

an effect on the transfer function. In this study, we approxi-

mate this effect using the following formula:

sR
0ðtÞ ¼

ð
½fT1ðsÞsR1ðt� sÞ þ fT2ðsÞsR2ðt� sÞ�ds; (2)

where sR
0(t) is the received signal of the proposed model in

the time domain, sR1(t) and sR2(t) are the fast and slow wave

signals of the conventional model in the time domain,

respectively, and fT1(t) and fT2(t) are the functions that

express the arrival time distributions of the wavefront at the

receive element for the fast and slow waves, respectively.

The frequency component of the received signal in the pro-

posed method is expressed as

SR
0ðf Þ ¼ F½sR

0ðtÞ� ¼ SIðf Þ½FT1ðf ÞH1ðf Þ þ FT2ðf ÞH2ðf Þ�;
(3)

where F denotes a Fourier transform, and FT1(f) and FT2(f)
are the frequency components of the arrival time distribu-

tions of the fast and slow waves, respectively. We call this

effect, which is caused by the arrival time distribution of the

wavefront, the path-length-variation (PLV) effect.

Figure 1 shows an example of the arrival time distribu-

tion of the wavefront at the receive element, and of the PLV

effect on the intensity and phase in the frequency domain. In

this case, the distribution follows a chi-squared distribution

with three degrees of freedom. Typically, the phase of FTi(f)
is not proportional to f and the intensity of FTi(f) is not con-

stant, where i¼ 1 and 2 for the fast and slow waves, respec-

tively. Therefore, we approximate FTi(f) in the main

frequency band using the following formula:

FTiðf Þ ffi ATi exp ½�cif þ jðdif þ hiÞ�; (4)

where ATi, ci, ri, and hi are real constants. cif and jrif denote

the attenuation and the time shift caused by the arrival time

distribution at the receive element, respectively. We call hi

the phase rotation parameter, and it is independent of f. The

modified transfer function with the additional phase rotation

parameter is expressed by the following formula:

Hi
0 fð Þ¼FTi fð ÞHi fð Þ

¼Ai
0 exp �bi

0fdþ j
2pfd

ci fð Þ�
2pfd

cW

� �
þ jdif þ jhi

� �
;

(5)

Ai
0 ¼ AiATi; (6)

bi
0 ¼ bi þ

ci

d
; (7)

where Ai is the signal amplitude parameter that is independ-

ent of f, bi is the slope of attenuation, i.e., broadband ultra-

sonic attenuation parameter, in the conventional model, d is

the bone specimen thickness, ci(f) is the phase velocity, and

cW is the sound velocity in water. Ai
0 and bi

0 are real con-

stants, and jdif denotes the time shift. Therefore, the major

modification made in the proposed model is the introduction

of the phase rotation parameter hi. The introduction of this

parameter compensates for the waveform change caused by

the uneven wavefront.

In this study, we assume that cW has a constant value.

When the medium has linear-with-frequency attenuation, the

phase velocities of the fast and slow waves can be expressed

by the following formula (Waters et al., 2005):

1

ci fð Þ �
1

ci f0ð Þ
¼ � bi

p2
ln

f

f0

� �
; (8)
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where f0 is a reference frequency.

We applied the proposed method to simulated and exper-

imental data measured in a previous work (Nagatani et al.,
2008). To prepare SI(f), we used the received signal passing

through water in an acoustic tube, where the center frequency

of the pulse was 1 MHz and the pulse length was equal to one

wavelength at the center frequency. Planar polyvinylidene flu-

oride transducers were used for both transmitter and receiver.

In this experiment, the bone specimen was immersed in water

in the acoustic tube. In the simulation study, the bone speci-

men size was 17� 17� d mm, where the bone specimen

thickness d varied from 2 to 9 mm. In the experimental study,

the bone specimen size was 20� 20� d mm, where the bone

specimen thickness d varied from 6 to 15 mm.

The proposed decomposition method used propagation

parameters that were reported in a previous study (Nelson

et al., 2011) as the provisional parameter set. This study also

used the experimental data reported by Nagatani et al.
(2008), and the parameters were estimated by application of

a Bayesian decomposition method to the received signal for

a bone specimen thickness of 9 mm. This setting modifies

the transfer function given by Eq. (5) to become

Hi
0 fð Þ ffi Ai

0 exp �bPifdTi þ j
2pfdTi

cPi fð Þ �
2pfdTi

cW

� ��

þjdi
0f þ jhi

0
�
; (9)

1

cPi fð Þ �
1

ci f0ð Þ
¼ �bPi

p2
ln

f

f0

� �
; (10)

where dTi is the temporal specimen thickness, and bPif and

cPi(f) denote the provisional attenuation coefficient and the

phase velocity that were reported in Nelson et al. (2011),

respectively. In this study, bP1 and bP2 were 49.2 and 7.1 dB/

cm/MHz, respectively, f0 was 1 MHz, and cP1(f0) and cP2(f0)

were 1933 and 1475 m/s, respectively. The proposed decom-

position method does not require A1 and A2, because it esti-

mated the parameters in a decomposition process. The

temporal specimen thickness dTi is never the same as the

estimated thickness, as emphasized in this study, because the

optimum value of dTi satisfies the equation bPidTi¼bi
0d.

That is, the use of dTi can compensate for the difference

between the optimum attenuation bi
0f and the provisional

attenuation bPif. Therefore, the modification of Eq. (9)

assumes application of the formula expressed by

2pfdTi

cPi fð Þ �
2pfd

ci fð Þ �
2pf dTi � dð Þ

cW

ffi di
00f þ hi

00; (11)

where di
00 and hi

00 are real constants. When the assumption

given by Eq. (11) is valid, the application of a time shift and

a phase rotation to the conventional model can produce

appropriate fast and slow waves. The proposed method opti-

mizes four parameters; the signal amplitude parameter Ai
0,

the temporal specimen thickness dTi, the time shift parameter

di
0, and the phase rotation hi

0.
Figure 2 shows the waveforms of the fast and slow

waves that were calculated using the modified transfer func-

tion in the experimental study, where the specimen thickness

varied from 5 to 25 mm and the phase rotation parameter

was 0�. The envelope amplitude of each wave was normal-

ized, and the rise time of each wave was set to t¼ 0 s after a

time shift process. In this study, we defined the rise time of

each wave as the time when the normalized amplitude first

exceeds 0.01, where specimen thicknesses are 5 and 20 mm.

The rise times for other thicknesses were determined by

interpolation and extrapolation. As shown in Fig. 2, the rise

FIG. 1. (a) Example of the arrival time

distribution of the wavefront at the

receive element, and (b) its intensity

and (c) phase in the frequency domain.

In this case, the distribution follows a

chi-squared distribution with three

degrees of freedom. We employ linear-

with-frequency models to approximate

the effect of the arrival-time-distribu-

tion on the intensity and phase rotation

in the major frequency band. ATi and hi

are the intensity and phase rotation pa-

rameters given in Eq. (4), respectively.
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times of the fast and slow waves were determined stably.

We can use another process to determine the rise time of

each wave. The phase rotation parameter hi changes the

waveforms of the fast and slow waves, as shown in Fig. 3.

B. Deconvolution method based on the FDI imaging
method

The proposed deconvolution method consists of two

parts; the first is the initial estimation of the fast and slow

waves using the FDI imaging method, and the second is the

conclusive estimation using the least squares method in the

time domain. Figure 4 shows a flowchart for the proposed

deconvolution method.

1. Initial estimation using the FDI imaging method

Typically, the amplitude of the fast wave is lower than

that of the slow wave. Because the fast wave is received ear-

lier than the slow wave, the proposed method selects a time

window for estimation of a fast wave, where the response of

the slow wave is negligible within that time window. To

select a time threshold that separates the fast and slow

waves, a previous work used a local minimum in the enve-

lope of the received signal in the time domain (Wear, 2014).

However, it is difficult to use this strategy under the strict

condition that the peak amplitude position of the fast wave is

located close to the fast wave in the time domain. The first

purpose of using the FDI imaging method is for accurate

selection of the rise time of the slow wave, TS. The second

purpose is to prepare candidate waves for the fast and slow

waves.

The FDI imaging method is a high-range-resolution

imaging method that uses an adaptive beamforming tech-

nique (Taki et al., 2012). The method suppresses the contri-

butions of undesired echoes under the constraint that a

reference signal must give a constant response. Therefore,

we construct several candidate waves for the fast and slow

waves using the modified transfer function that was

described in Sec. II A, where each candidate is used as the

reference signal in the FDI imaging method. The estimated

intensity calculated by the FDI imaging method is normal-

ized with respect to the amplitude of the employed reference

signal. To eliminate the effect of this normalization on the

estimated intensity, we set the peak amplitude of each enve-

lope to 1.

The FDI imaging method was designed based on the

condition that a narrowband signal is used, and it assumes

that all frequency components of a single wave have the

same intensity and phase. During the application of ultra-

sound using a broadband signal, the intensity and the phase

of a frequency component of a single wave vary with the fre-

quency. To ensure that the intensity and phase of the fre-

quency components are uniform, each frequency component

of a received signal is normalized with respect to the refer-

ence signal (Taki et al., 2012),

XHl ¼ XlX
�
Rl=ðjXRlj2 þ gÞ; (12)

where Xl, XHl, and XRl are the lth frequency components of

the received signal, of the received signal after normaliza-

tion, and of the reference signal, respectively, the superscript

asterisk denotes the complex conjugate, and g is a constant

term used for stabilization. In this study, we set the value of

FIG. 2. Waveforms of (a) fast and (b)

slow waves calculated using the modi-

fied transfer function in the experimen-

tal study. The specimen thickness d
ranges from 5 to 25 mm. The phase

rotation parameter hi is 0�.

FIG. 3. Waveforms of (a) fast and (b)

slow waves calculated using the modi-

fied transfer function in the experimen-

tal study. The specimen thickness d is

9 mm. The phase rotation parameters

hi are 0�, 45�, 90�, and 135�.
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g to be 40 dB lower than the average intensity of the refer-

ence signal, XRl.

The phase of each frequency component of a received

signal XHl depends on the product of its frequency and the

path length. The output intensity of the FDI imaging method

is therefore formulated as follows:

PðrÞ ¼ jXT
HW�j2 ¼WT�RW; (13)

R ¼ XHXT�
H ; (14)

where r/2 is the measurement depth, XH is the received sig-

nal vector that consists of XHl, the superscript T denotes the

transpose, and W is a weighting vector used for phase com-

pensation. The simplest setting is the employment of a fixed

weighting vector given by

W ¼ ½ ejk1r ejk2r � � � �T; (15)

where kl is the lth wavenumber of the frequency components.

The proposed FDI imaging method uses the Capon

method, which is an adaptive beamforming technique.

However, the FDI imaging method using the Capon method

does not work when the waves are correlated with each other.

Therefore, we must suppress the correlation between the fast

and slow waves. The employment of the frequency averaging

technique suppresses the correlation between the two waves

(Taki et al., 2012),

RA ¼
1

M

XM

m¼1

Rm; (16)

where RA is the covariance matrix after frequency averag-

ing, M is the number of sub-matrices used for frequency

averaging, and Rm is a sub-matrix of R where the (i0, j0) ele-

ment of Rm corresponds to the (i0 þm� 1, j0 þm� 1) ele-

ment of R.

The FDI imaging method with the Capon method sup-

presses any undesired echoes under the constraint of a con-

stant response for the reference signal at a measurement

depth (Capon, 1969). This problem is expressed by the fol-

lowing formulas:

min WT�RAW subject to CT�W ¼ 1 ; (17)

C ¼ ½ ejk1r ejk2r � � � ejkLr �T; (18)

where L is the size of RA. This problem can be solved by the

application of Lagrange multiplier methods without the iter-

ation process, as emphasized in this study (Taki et al., 2012).

When the optimum weighting vector is used, the estimated

intensity can be expressed using the following formulas:

PCap rð Þ ¼ 1

CT� RA þ g0Eð Þ�1
C
; (19)

where g0E is a diagonal loading used for stabilization. In this

study, we set the value of g0 to be 40 dB lower than the aver-

age of the diagonal elements of RA. Equation (19) indicates

that only a single calculation of the inverse matrix is

required to acquire the estimated intensity profile for all

depths without calculation of the optimum weighting vector.

The FDI imaging method is therefore suitable for real-time

signal processing applications.

When the waveform of a candidate is unlike that of the

slow wave, the output intensity estimated by the FDI imag-

ing method generally decreases. In other words, the output

intensity will be at a maximum when the candidate wave-

form is closest to the waveform of the slow wave. We there-

fore calculate the intensity profiles of all candidates for the

slow waves, and select the candidate where the peak inten-

sity in its profile is the highest among all candidates. We use

the depth of the peak intensity of the selected candidate for

the rise time of the slow wave. In the least mean squares pro-

cess, we extracted the candidates with peak intensities that

were higher than 1/100 of the maximum peak intensity. In

the FDI imaging process, we prepared 11 candidates for

each of the fast and slow waves, where the thickness d
ranged from 5 to 25 mm and the sampling interval is 2 mm.

In the fast wave case, the rise time and the candidate extrac-

tion for the least squares method were determined by the

same process that was used for the slow wave, with the

FIG. 4. Flowchart of the proposed deconvolution method.
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exception that the rise time of the fast wave should be at

least 0.4 ls earlier than that of the slow wave.

Figure 5 shows the intensity profile of the slow wave

that was estimated using the FDI imaging method in the ex-

perimental study. Wear used the local minimum of the enve-

lope to determine the border between the fast and slow

waves (Wear, 2014). However, in many cases, no local mini-

mum exists for the envelope, as shown in Fig. 5. In contrast,

the estimated intensity profile of the slow wave that was cal-

culated by the FDI imaging method shows a sharp peak at

the rise time of the slow wave, TS. Therefore, the FDI imag-

ing method is suitable for determination of the border

between the fast and slow waves.

2. Conclusive estimation using the least squares
method

The proposed decomposition method uses the least

squares method in the time domain to characterize the fast

and slow waves. In the characterization process, the pro-

posed method optimizes the signal amplitude parameter Ai
0,

the temporal specimen thickness dTi, the rise time

TRi¼�di
0/2p, and the phase rotation hi

0, as expressed in Eq.

(9). When TRi¼ 0, i.e., di
0 ¼ 0, a candidate for the fast and

slow waves in the time domain is expressed using the fol-

lowing formulas:

siðdTi;Ai
0; hi

0; tÞ ¼ RefF�1½SIðf ÞHi
0ðf Þdi

0¼0�g

ffi Ai
0 cos hi

0Refs0iðtÞg
þ Ai

0 sin hi
0Refjs0iðtÞg; (20)

s0i tð Þ¼F�1 SI fð Þexp �bPifdTiþ j
2pfdTi

cPi fð Þ�
2pfdTi

cW

� �� �� �
;

(21)

where F
�1 denotes an inverse Fourier transform. Estimation

of the fast and slow waves uses minimization of the sum of

squares D on four variables,

DðdTi;Ai
0;hi
0;TRiÞ ¼

XT2

t¼T1

jsoðtÞ � siðdTi;Ai
0;hi
0; t� TRiÞj2;

(22)

where so(t) is the objective function used for fitting, and

T1	 t	 T2 is a fitting region. The proposed method uses

provisional constant values for bPi and cPi, and the waveform

of si
0(t) varies with the single variable dTi. Because each

value of Ai
0cos hi

0 and Ai
0sin hi

0 is a real number, estimation

of Ai
0 and hi

0 requires a single linear least squares process on

two variables for each variable set of dTi and TRi. Therefore,

the number of linear least squares processes required is the

product of the number of specimen thickness candidates dTi

and the number of rise time candidates TRi.

In the least mean squares process, we prepared 111 can-

didates for each of the fast and slow waves, where d ranged

from 4 to 26 mm and the sampling interval was 0.2 mm.

Because candidate extraction using the FDI imaging method

reduced the number of candidates, the number of candidates

that was actually used in the least mean squares process

was 111 or less. The rise time candidates ranged from TiFDI

� 0.8 ls to TiFDIþ 0.8 ls, where TiFDI is the rise time calcu-

lated using the FDI imaging method, and T2FDI¼ TS.

For characterization of the fast and slow waves, we

selected the fitting region TA	 t	 TP, as shown in Fig. 6. In

this study, TA¼TE� 4 ls and TP¼TEþ 0.8 ls, where TE is

the peak time of the envelope. These settings were used

because the t< TA region contains almost no signal, and in

the region where t>TP, the contributions of multiple reflec-

tions in the cancellous bone might not be negligible.

In the least squares process, the fast and slow waves are

estimated alternately and recurrently. The objective func-

tions used for fitting of the fast and slow waves are expressed

by the following formula:

FIG. 5. Slow wave intensity estimated

using the FDI imaging method when

the specimen thickness is (a) 9 mm and

(b) 12 mm in the experimental study.

The vertical broken line corresponds to

the rise time of the slow wave as esti-

mated by the FDI imaging method.

FIG. 6. Fitting region used in the least squares method. TE is the peak time

of the envelope, and TS is the rise time of the slow wave calculated using

the FDI imaging method. TA¼TE� 4 ls, and TP¼TEþ 0.8 ls.
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soðtÞ ¼
sRðtÞ � sE2ðtÞ ði ¼ 1Þ;
sRðtÞ � sE1ðtÞ ði ¼ 2Þ;

�
(23)

where sR(t) is the received signal, and sE1(t) and sE2(t) are

the fast and slow waves that were estimated in the previous

least mean squares process, respectively. At the beginning of

the estimation process, sE1(t)¼ sE2(t)¼ 0.

First, the slow wave is estimated using the least mean

squares method, where the fitting region is set as TS	 t	 TP,

i.e., T1¼ TS and T2¼ TP in Eq. (22). To estimate the fast

wave, the method is applied to a region where the contribu-

tion of the slow wave is negligible. The fitting region for the

fast wave is therefore set as TA	 t	 TS. After estimation of

the fast wave, the slow wave is estimated for a fitting region

of TA	 t	 TP. The initial estimation of the slow wave uses

the posterior fitting region of TS	 t	TP, because the fast

wave has not been eliminated from the objective function for

slow wave fitting. The number of iteration steps at the fitting

of the fast and slow waves ranged from 1 to 5.

III. RESULTS

Figure 7 shows the fast and slow waves in the simula-

tion study that were estimated using the proposed

decomposition method. Figure 8 shows the estimated fast

and slow waves in the experimental study. In both cases, the

summation of the estimated fast and slow waves strongly

agreed with the received signal. Figure 9 shows the residual

intensity normalized with respect to the intensity of the

received signal over the whole fitting region of TA	 t	 TP,

which has a width of 4.8 ls. The proposed method succeeded

to characterize of the fast and slow waves accurately, where

the residual intensity normalized with respect to the received

signal intensity was less than �20 dB in the experimental

study. In the simulation study, the residual intensity was less

than �20 dB when the specimen thickness was from 3 to

8 mm. In both the simulation and experimental studies, the

number of iteration steps had only a slight effect on the

results. These results demonstrate the high performance and

robustness of the proposed method in the estimation of fast

and slow waves. The calculation time required to estimate

FIG. 7. Fast and slow waves estimated by the proposed decomposition

method for specimen thicknesses of (a) 4 mm, (b) 6 mm, and (c) 8 mm in the

simulation study. Each constructed signal represents the summation of the

estimated fast and slow waves.

FIG. 8. Fast and slow waves estimated by the proposed decomposition

method for specimen thicknesses of (a) 6 mm, (b) 9 mm, (c) 12 mm, and (d)

15 mm in the experimental study. Each constructed signal represents the

summation of the estimated fast and slow waves.
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the fast and slow waves for a single received signal was 5 s

using a laptop personal computer (PC) with a single central

processing unit (CPU), where the number of iteration steps

was 3.

IV. DISCUSSION

Figure 9 shows that a single estimation process was suf-

ficient for accurate characterization of the fast and slow

waves, and that the number of iteration steps had only a

small effect on the characterization performance. The high

performance and robustness of the proposed method may

originate from the accurate estimation of the rise time of the

slow wave, TS, using the FDI imaging method. Because the

fitting region for the fast wave is t<TS, the accurate estima-

tion of TS provides an appropriate fitting region for the fast

wave that is wide and is little affected by the estimated slow

wave. Therefore, the number of iteration steps may have a

small effect on the estimation of the fast wave using the pro-

posed method, as indicated by the results shown in Fig. 9.

In most cases, the least mean squares process used all

111 candidates, especially for the slow wave fitting process.

In the simulation study, the average numbers of candidates

used by the process were 72.5 and 111 for the fast and slow

waves, respectively. In the experimental study, 89.2 and

102.1 candidates were used for the fast and slow waves,

respectively. The proposed method used the candidates with

peak intensities that were higher than 1/100 of the maximum

peak intensity, and a more severe constraint will suppress

the computational load, although it would be at the cost of

some robustness.

The proposed decomposition method estimated the

specimen thickness, the signal amplitude and the phase rota-

tion for each wave. We calculated the signal amplitudes Ai
0

and the slopes of attenuation (broadband ultrasonic attenua-

tion parameters) bi
0 from the true specimen thickness and

using the parameters estimated by the proposed method, as

shown in Fig. 10. In the experimental study, the signal am-

plitude of the fast wave was higher than 1 under all specimen

thickness conditions. This is inconsistent with Eq. (5),

because the signal amplitude should be less than 1. This

result indicates that the linear-with-frequency attenuation

model may be inappropriate for the fast wave transfer model

at least. The frequency components of the fast wave that

were estimated by the proposed method may agree with

those of the true fast wave in the high signal-to-noise ratio

range, as shown in Fig. 11. Because the true signal amplitude

should be less than 1, the attenuation coefficient of the fast

wave a1(f) may be written using the following formula:

a1ðf Þ ¼ b1f y ðy > 1Þ: (24)

The use of an attenuation model described by a power

law, i.e., the model given by Eq. (24), should improve the

estimation accuracy for characterization of the fast and slow

waves; however, this also causes a large increase in the com-

putational load. Because the residual intensity normalized

with respect to the received signal was less than �20 dB, the

linear-with-frequency attenuation model may be sufficient

for the proposed decomposition method.

Figure 12 shows the phase rotation values hi for the fast

and slow waves that were estimated by the proposed method

FIG. 9. Residual intensity in (a) the

simulation study and (b) the experi-

mental study when normalized with

respect to the intensity of the received

signal over the entire fitting region,

which has a width of 4.8 ls. The num-

ber of iteration steps at the fitting of

fast and slow waves is from 1 to 5.

FIG. 10. (a) Signal amplitudes and (b)

slopes of attenuation (broadband ultra-

sonic attenuation parameters) for the

fast and slow waves in the experimen-

tal study estimated using the proposed

decomposition method with a linear-

with-frequency attenuation model.
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in the experimental study. The phase rotation of the slow

wave seemed to be constant. In contrast, the phase rotation

of the fast wave varied, and its differential seemed to be

related to the differential of the specimen thickness. This

result can be explained by introducing the hypothesis that

wave transfer in a cancellous bone causes a physical phe-

nomenon, e.g., the uneven wavefront, and the phase rotation

originates from this phenomenon. Because the slow wave

mainly transfers in the bone marrow, which is a liquid mate-

rial, this physical phenomenon may not occur and the phase

rotation may in fact be independent of the specimen thick-

ness. The constant phase rotation may originate at the

moments of transmission and reception of the ultrasound

wave, where it might be caused by the waveform change

that originated from the uneven wavefront. In contrast, the

fast wave mainly transfers in the bone structure. Therefore,

the physical phenomenon may occur at the point of transfer

in the bone, and the cumulative effect of this phenomenon

may cause the phase rotation that depends on the specimen

thickness. This consideration may validate the use of the

phase rotation parameter in the transfer function.

V. CONCLUSION

In this study, we proposed a novel fast decomposition

method based on the FDI imaging method, where the FDI

imaging method enables accurate determination of the bor-

der between the fast and slow waves. In addition, we pro-

posed a modified wave transfer function using a phase

rotation parameter that may compensate for the waveform

change caused by the uneven wavefront. The proposed

method provided accurate characterization of the fast and

slow waves, where the residual intensity normalized with

respect to the received signal intensity was found to be less

than �20 dB in an experimental study using bone specimens

with thicknesses ranging from 6 to 15 mm. In the simulation

study, the residual intensity was less than �20 dB when the

specimen thickness was from 3 to 8 mm. The characteriza-

tion of the fast and slow waves for a single received signal

takes only 5 s using a laptop PC with a single CPU. We

believe that this method has great potential to provide good

indicators of osteoporosis accurately and rapidly.
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