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SUMMARY Radars utilizing ultra-wide-band (UWB) pulses are attrac-
tive as an environment measurement method for various applications in-
cluding household robots. Suitable filtering is essential for accurate rang-
ing, which requires an accurate waveform estimation. This paper presents a
high-resolution algorithm of estimating target location and scattered wave-
forms, whose accuracies are interdependent. The technique relies on itera-
tive improvements of estimated waveforms. Description of the algorithm is
followed by statistical simulation examples. The performance of the algo-
rithm is contrasted with conventional ones and statistical bounds. Results
indicate that our proposed algorithm has a remarkable performance, which
is close to the theoretical limit. Next, we clarify the problem of applying
HCT to multiple targets. HCT for multiple targets can not be used as an
estimated waveform because of interference waves from other targets. We
propose an interference suppression algorithm based on a neural network,
and show an application example of the algorithm.
key words: UWB pulse radar, radar imaging, waveform estimation, non-
parametric estimation, neural network

1. Introduction

Radars utilizing ultra-wide-band (UWB) pulses have an ad-
vantage of directly measuring the range with high accura-
cies compared to other methods such as a technique with
stereo cameras. They can also be used in situations where
optical measurements are not available due to smoke in
the scene of a fire or other hazardous areas. Therefore, a
UWB pulse radar is attractive as an environment measure-
ment method for various applications including household
robots. However, the accuracy of a UWB pulse radar is
not sufficient without a suitable filtering, which is a criti-
cal issue. Waveform estimation is very important for pulse
radar systems because it improves locationing accuracies.
Waveforms of scattered pulses are unknown without esti-
mating target shape because scattered waveforms depend on
the shape of the target. Therefore, it is required to estimate
target locations and scattered waveforms simultaneously. In
this paper, we propose an algorithm which simultaneously
estimates target locations and scattered waveforms for UWB
pulse radar systems [1].

Many kinds of imaging algorithms have been proposed
[2]–[20]. Although parametric algorithms are effective ap-
proaches [2]–[14], they have problems concerning a calcula-
tion time and stabilities. On the other hand, non-parametric
algorithms are helpful especially for DOA (Direction-Of-
Arrival) estimation [15]–[20]. However, they can not be
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used for target shape estimations. We have already devel-
oped a non-parametric shape estimation algorithm based
on BST (Boundary Scattering Transform) [21]. The algo-
rithm utilizes the existence of a reversible transform BST
between target shapes and pulse delays. We extract quasi-
wavefronts from observed data in the algorithm. Then, we
obtain the target shape by applying the inverse BST to the
quasi-wavefronts. The algorithm has a remarkable perfor-
mance in estimating target shapes.

In this way, the algorithm works well and achieves a
good estimation of target shapes, but a problem remains.
The algorithm can not use an optimum filter because it does
not estimate scattered waveforms. The difference between
the scattered waveforms and the assumed waveforms de-
grades the estimation accuracy. Our objective is to develop a
non-parametric high-resolution target locationing algorithm
by improving the ranging accuracy iteratively. The algo-
rithm should be applicable for a general situation including
a near field and a far field. In this paper, we deal with an al-
gorithm for locationing a point target for simplicity. Further
studies are required to apply the proposed algorithm to the
imaging algorithm based on BST.

In this paper, we propose a high-resolution estimation
algorithm of target locations and scattered waveforms for
UWB pulse radar systems. Firstly, we explain the algorithm
and formulate the procedure. We then examine the perfor-
mance of our method by contrasting it with conventional
methods and statistical bounds using numerical simulations.
Next, we clarify the problem of applying the proposed algo-
rithm to multiple targets. We propose an algorithm of sup-
pressing interference based on a neural network algorithm.
Finally, we show an application example of the proposed
interference suppression algorithm.

2. System Model

We assume an M-element linear sensor array with intervals
of half-wavelength at the center frequency of the pulse, and
one point target located within its near field. This is be-
cause it is more general and difficult to deal with a target in
a near field rather than in a far field. We assume that each
sensor is omni-directional and the effect of mutual coupling
can be neglected. In the situation where these assumptions
are not satisfied, we should compensate for the effects as
discussed in Sec. 6. We transmit the pulse with the cen-
ter sensor of the array, and receive the scattered signal with
all the sensors. The received data with each sensor is input
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Fig. 1 The location of the sensor array and coordinates used in the
present paper.

Table 1 Simulation parameters.

Sensor Array M = 11
Sensor Interval 0.5 λ
IHCT Iteration 40 times

Observation Duration 24 λ
Sampling 83 samples/λ

into an A/D converter, and stored into a memory. We de-
fine T = [Tx, Ty] as the real target location. Figure 1 shows
the location of the sensor array and the coordinates, where
λ is the center wavelength of the transmitted signals. The
transmitted pulse is a mono-cycle pulse, which is suitable
for radar systems because it has no DC power. The used
pulse has a relative bandwidth of 96.3%, which satisfies the
condition of UWB determined by FCC (Federal Commu-
nications Commission) that UWB has a relative bandwidth
of more than 20% of the carrier frequency, or an absolute
bandwidth larger than 500 MHz. The scattered wave is a
spherical wave because the target is within the near field.
Therefore, the signal delay draws a hyperbola as a function
of the location of the sensors. We assume that the observer
has no information of scattered waveforms.

We deal with a 2-dimensional problem in this paper.
We also define a signal image s(x, y) as

s ((m − (M + 1)/2) d/λ, ct/λ) ≡ s′m(t), (1)

where s′m(t) is the received signal with the m-th sensor, c is
speed of the light, and d = λ/2. This definition of a signal
image is advantageous because space x and time y are nor-
malized by wavelength. Our algorithm estimates the target
location T using the signal image s(x, y). Table 1 shows the
simulation parameters.

3. Waveform and Filtering

In this section, we explain the importance of estimating
waveforms in the proposed algorithm. Wiener filter is of-
ten used for estimation of the turn-around-time because it is
an effective denoising filter. Wiener filter for signal G(ω) is
expressed as

W(ω) =
G∗(ω)

(1 − η) + η|G(ω)|2 , (2)

where η = 1/(1 + (S/N)−1). W(ω) works as an inverse fil-
ter for large S/N (η � 1). On the other hand, it works as a
matched filter for small S/N (η � 0). Here, we define the
signal power S = max |s(x, y)|2. W(ω) is the optimal filter,

in the sense that it minimizes the mean square error between
the output signal and the impulse function. However, we
can not directly apply Wiener filter to our purpose, because
W(ω) requires the scattered waveform G(ω). This is the rea-
son why our proposed method is important.

4. Theoretical Limit of Locationing Accuracy

In this section we derive the theoretical limit for our prob-
lem. The derived theoretical limit is based on Cramer-Rao
lower bound (CRLB) [22]. We define RT−Ti

as the covari-
ance matrix of the estimation error of the target location, and
Ti = (xi, yi) as the estimated target location for i-th iteration.
The original expression of CRLB is

RT−Ti
≥ J−1(T), (3)

where J(T) is Fisher information matrix expressed as

J(T) j,k = −E

{∫∫
∂2 log p (s|T)
∂T j∂Tk

dxdy

}
, (4)

where p(s|T) is the conditional probability density function
of s(x, y) and j, k ∈ {x, y}. We define E{} as an expectation,
which means an ensemble average. We can not directly use
Eq. (3) because the estimation error is expressed as ei = |T−
Ti|. We thus define q(∆T) as the probability density function
of ∆T = T − Te, where Te is the theoretical best estimation.
We assume q(∆T) as

q(∆T) =
(detJ(T))1/2

2π
exp

[
−1

2
∆TJ(T)∆TT

]
. (5)

Assuming Eq. (5) gives

ei ≥ eCRLB =

∫ ∞

−∞
|∆T|q(∆T)d∆T. (6)

eCRLB is the theoretical limit for the estimation of target lo-
cation. We calculate eCRLB for each S/N in order to contrast
with the simulation results. We call eCRLB as CRLB for sim-
plicity in the following sections.

5. The Proposed Method for Locationing

In this section, we explain the proposed algorithm. We de-
fine Hyperbolic Coherent Transform (HCT) as

H(ω,Ti) ≡
∫∫ ∞

−∞
s(x, y)

ejω[u(x,Ti)−y]
√

u(x,Ti)
dxdy, (7)

where we define

u(x,Ti) ≡ |Ti| +
√

(x − xi)2 + y2
i . (8)

HCT works as the Fourier transform for y. u(x,Ti) is a de-
lay time compensation for x.

√
u(x,Ti) is required in or-

der to improve S/N of HCT, which we explain in the ap-
pendix. HCT estimates F(ω), which is the Fourier transform
of the scattered waveform, using coherent integration of the
received signals. We can describe the algorithm of target
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location estimation as

maximizeTi+1

∣∣∣∣∣∣
∫ ∞

−∞

H(ω,Ti+1)P∗i (ω)

1 − η + η|Pi(ω)|2 dω

∣∣∣∣∣∣
2

, (9)

where Pi(ω) is the waveform used for constructing Wiener
filter. Equation (9) means to maximize the power of the fil-
tered signal at t = 0, which is calculated in the frequency
domain. This is based on the fact that substituting t = 0 for
exp(jωt), the integral kernel of the inverse Fourier transform,
the integral kernel shrinks to 1. Equation (9) includes all al-
gorithms we investigate in this paper, which depends on the
definition of Pi(ω). We set the initial waveform H(ω,T0)
as the Fourier transform of the transmitted waveform. We
optimize Eq. (9) using Quasi-Newton method, where we set
the initial value of Ti to the optimized Ti−1. We determine
the initial value of T1 using a simple grid search.

We set Pi(ω) to

Pi(ω) = (H(ω, Ti) ∗ sinc(t0ω)) |Pi−1(ω)| (10)

for the proposed algorithm. We call the proposed algorithm
IHCT (Iterative HCT) because it is based on an iterative im-
provement of estimation. Equation (10) works as extrac-
tion of dominant-frequency waveform. The final form of
Pi(ω) is a narrow-band filter, which is apparently inferior
to the ideal matched filter as a single filter for signal detec-
tion. However, the major problem of a narrow bandwidth is
the ambiguity in finding the peak location, which is solved
by the wide-band filter at earlier stages. A better resolu-
tion is obtained by accurately determining the phase of the
dominant-frequency component. Convolution of sinc(t0ω)
is a simple windowing, which prevents the waveform from
having an extremely narrow band. We set t0 to the pulse du-
ration of the transmitted signal. Figure 2 shows the outline
of IHCT. We also define IHCTW (IHCT Without waveform
estimation) which is a conventional method. We set Pi(ω)
for IHCTW as Pi(ω) = H(ω,T0), which is the transmitted
waveform. Moreover, we investigate IHCTK (IHCT with
Known scattered waveform) which represents the ideal sit-
uation. We set Pi(ω) for IHCTK as Pi(ω) = F(ω), which is
the true scattered waveform. IHCTK is not realistic because
F(ω) is unknown in an actual case. Table 2 shows Pi(ω) for
each method.

Fig. 2 The outline of IHCT.

Table 2 Pi(ω) (Denoised HCT) for each method.

IHCT (H(ω, Ti) ∗ sinc(t0ω)) |Pi−1(ω)|
IHCTW H(ω, T0)
IHCTK F(ω)

6. Performance Evaluation of IHCT Algorithm

In this section we investigate the performance of the pro-
posed method by contrasting with the conventional method
and the theoretical limit. We assume the received waveform
is the 1st order differential of the transmitted waveform. Fig-
ure 3 illustrates the waveform of Pi(ω) for i = 1, 5 and 10.
The bandwidth of the waveform becomes narrower as the
iteration proceeds.

Figure 4 shows the locationing accuracy of each al-
gorithm compared to CRLB. Here, we set the target loca-
tion to T = (2 λ, 2 λ). The relationship between the esti-
mation error eL and the peak S/N is illustrated in the fig-
ure. IHCT, IHCTW and IHCTK have poor performance
for S/N < 11 dB due to invalid initial guess of T1, which
is caused by the poor S/N. IHCTK achieves CRLB for
S/N ≥ 11 dB, which means the optimization in Eq. (9) can
achieve the theoretical limit only if we know the scattered
waveform F(ω). IHCTW has a floor of estimation error for
S/N ≥ 11 dB, which is caused by biases due to the fixed
reference waveforms. The difference between the transmit-
ted waveform and the scattered waveform causes this error.
On the other hand, the performance of IHCT is close to
CRLB. The ratio of the estimation accuracy of IHCT to that
of CRLB is 1/4 at most. The estimation error of IHCT has
no floor for S/N ≤ 40 dB. The estimation accuracy of IHCT
is 140 times better than that of IHCTW. Moreover IHCT
achieves an accuracy of 10−3 λ for S/N > 34 dB, which is
sufficiently high for practical use.

Figure 5 shows the estimation error of target location

Fig. 3 Estimated dominant-frequency waveforms.

Fig. 4 Estimation error of the target location.
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Fig. 5 Estimation error for various target locations.

using IHCT for various target locations for S/N = 40 dB.
From the figure, we see that the order of estimation error
is 10−3 λ for all target location except for the two areas on
both sides of the array. The poor performance of IHCT in
the two areas is caused by the ambiguity of the signal with
target locations.

In actual case, the effect of mutual coupling may not
be neglected. In such a case, it is possible to compensate
for the pattern of mutual coupling because IHCT is based
on iterative improvement. The compensation factor can be
calculated using the target location estimated at each itera-
tion. We have confirmed the validity of the compensation
algorithm of mutual coupling implemented in the IHCT al-
gorithm for a case where the gain varies by 1 dB.

We have proposed a locationing algorithm for UWB
pulses. If it is applied to narrow-band signals, the resolution
degrades because it is difficult to determine the initial value
because of the ambiguity due to periodicity of narrow-band
signals. We have shown the application example of the al-
gorithm for a target in a near field. However, the proposed
algorithm can be applied for a far field as well. As for com-
putational time, the proposed algorithm with iteration of 40
times takes about 50 sec with Xeon 2.8 GHz processor.

7. Interference Suppression Algorithm for HCT of
Multiple Targets

An accurate locationing of targets requires an accurate
waveform estimation as described in the previous sections.
HCT for a single target can be used as an estimation of the
waveform although the noise reduction algorithm is needed.
On the other hand, HCT for multiple targets can not be used
as a waveform estimation due to the problem of interference.
The waveform scattered by a certain target is integrated co-
herently, and the waveforms scattered by other targets are
summed with random delays, which causes cancellation of
waves. However, the cancellation of interference waves is
not sufficient because the number of antennas is limited, and
the signal power is localized. Interference waves can not be
neglected especially if the number of targets is large. This
residual interference wave is one of the most critical prob-

Fig. 6 Multiple targets location and antennas.

Fig. 7 HCT for multiple targets and true waveform for s(x, y).

lems when HCT is applied to multiple targets. In this sec-
tion, we propose an interference suppression algorithm for
HCT. We also show the application example of the proposed
algorithm using a numerical simulation.

Firstly, we show an example of interference waves. We
assume that 5 point targets are located as symbols in Fig. 6.
Each waveform of the target is the 1st order differential of
the transmitted waveform. We assume that we do not have
any information about the scattered waveform. We define
h(y,T) as the IFT (Inverse Fourier Transform) of H(ω,T),
and we deal with HCT in the time domain. In Fig. 7, the
broken line indicates the true scattered waveform, and the
solid line indicates h(y,T) for T = (2 λ, 2 λ). In the figure,
we see that undesirable interference waves exist in HCT.

We define σ(y) as a standard deviation of waveforms,
which is expressed as

σ(y) = Aσ

√∫ ∞

−∞
s(x, y)2dx, (11)

where we set Aσ to satisfy maxσ(y) = 1. We also define
e(y) as the instantaneous envelope [23] of HCT. e(y) can be
expressed as

e(y) = Ae

∣∣∣∣∣h(y,T) +
j
π

∫ ∞

−∞
h(v,T)
y − v dv

∣∣∣∣∣ , (12)

where we set Ae to satisfy max e(y) = 1. The integration
in Eq. (12) means Hilbert Transform of h(y,T). Figure 8
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Fig. 8 σ(y) and e(y) for s(x, y).

Fig. 9 Neural network model utilized in the proposed algorithm.

shows σ(y) and e(y) for the observed data. In the figure, we
see that σ(y) is small compared to e(y) where the true wave
exists. We propose an interference suppression algorithm
by utilizing this characteristic. We define an interference-
suppressed waveform ĥ(y,T) as

ĥ(y,T) = ξ (σ(y), e(y)) h(y,T), (13)

where ξ (σ, e) is a weight function. We select ξ (σ, e) to sat-
isfy

minimizeξ

∫ ∞

−∞

{
ĥ(y,T) − f (y)

}2
dy, (14)

where f (y) is the IFT of F(ω), which is the true scattered
waveform. We utilize a neural network in order to optimize
ξ(σ, e) because ξ(σ, e) should be dealt with as a nonlinear
function in general. We utilize a 3-layered neural network
shown in Fig. 9. The ellipse symbols in the figure indicate
sigmoid functions. We define xm,n and ym,n as the n-th values
in the m-th layer. ym,n are calculated as

ym,n = u(xm,n) (15)

= 1/{1 + exp(−xm,n)}, (16)

where u(x) is called a sigmoid function. xm,n are calculated
as

xm,n =

L∑
l=1

wm,l,nym−1,l + βm,n, (17)

where, we set L = 2. Figure 10 shows the procedure of sup-
pressing interference in the proposed algorithm, assuming
the parameters in the neural network is already optimized.
In order to obtain the solution of the minimization problem
in Eq. (14), it is required to know the true scattered wave-
form f (y). Here, it is impossible to know f (y) prior to the

Fig. 10 The outline of interference suppression in the proposed
algorithm.

Fig. 11 The outline of neural network learning procedure in the proposed
algorithm.

waveform estimation. Therefore, in the proposed algorithm,
we utilize the transmitted waveform h(y,T0) instead of the
true scattered waveform f (y). We assume that we know ap-
proximate locations of the targets.

The proposed algorithm for an interference suppression
is as follows. Firstly, we generate an estimated received sig-
nal se(x, y) assuming all the signals from targets are equal to
h(y,T0). Then, we calculate e(y) and σ(y) from se(x, y). In
this case, we can solve the minimization problem in Eq. (14)
because we know the true waveform h(y,T0). We determine
the function ξ(σ, e) by solving the optimization problem
with e(y), σ(y) and h(y,T0) for se(x, y). Figure 11 shows
the outline of learning procedure with the neural network in
the proposed algorithm. The sum of the error in the figure
is minimized for se(x, y). We utilize Levengerg-Marquardt-
Morrison method for this optimization. Next, we calculate
e(y) and σ(y) for s(x, y). Then we calculate an interference-
suppressed waveform for s(x, y) as in Fig. 10. In this way,
we obtain waveform ĥ(y,T) after the interference suppres-
sion.

We show an application example of the proposed algo-
rithm. In Fig. 12, the broken line and the solid line indicate
h(y,T0) and h(y,T) for se(x, y), respectively. The interfer-
ence waveform in the figure is completely different from that
of s(x, y) in Fig. 7. Figure 13 shows e(y) and σ(y) calculated
for se(x, y). We solve the optimization problem in Eq. (14)
and determine the function ξ(σ, e). Then, we obtain ĥ∗(y,T)
for se(x, y). The solid line and broken line in Fig. 14 show
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Fig. 12 HCT for multiple targets and true waveform for se(x, y).

Fig. 13 Instantaneous envelope of HCT and standard deviation using
se(x, y).

Fig. 14 Interference suppressed waveform and true waveform for
se(x, y).

ĥ∗(y,T) and h(y,T0) respectively. We see that ξ(σ, e) can
suppress the interference waves to se(x, y). Next, we mul-
tiply h(y,T) by ξ(σ, e) in order to suppress the interference
of s(x, y). In Fig. 15, the solid line and the broken line show
the interference-suppressed waveform ĥ(y,T) and the true
waveform f (y) for s(x, y) respectively. In the figure, we see
that the proposed algorithm successfully suppresses the in-
terference for s(x, y).

As a result, we clarified that the proposed algorithm
has a sufficient performance in suppressing interference
waves. Accurate estimations can be accomplished not only
for se(x, y) but also for s(x, y). Although the function ξ(σ, e)

Fig. 15 Interference suppressed waveform and true waveform for s(x, y).

is optimized for se(x, y), it works well for s(x, y). The learn-
ing procedure of the neural network in the proposed algo-
rithm can be accomplished without the true waveforms, be-
cause ξ(σ, e) depends only on the amplitude distributions of
e(y) and σ(y) and the true waveform. It should be noted
that the proposed algorithm selects strong signals regardless
of whether they are from desired or undesired targets. We
thus assume that the interference waves have comparatively
small power because the signals with large power are chosen
firstly.

8. Conclusions

UWB pulse radar systems are promising candidates for
environment measurement. Firstly, we proposed a high-
resolution algorithm for target locationing without informa-
tion of scattered waveforms. The proposed method simulta-
neously estimates target locations and scattered waveforms
for UWB pulse radar systems. The proposed method es-
timates dominant-frequency waveforms of scattered wave-
form iteratively. We also examined the performance of our
method by contrasting them with conventional methods and
statistical bounds. We evaluated the performance in terms of
the estimation accuracy of target locations utilizing numeri-
cal simulations. We showed that the performance of the pro-
posed method is close to the theoretical limit. We clarified
that the estimation accuracy of the proposed method is 140
times better than that of the conventional method. We also
made it clear that the proposed method achieves an accuracy
of 10−3 λ for S/N > 34 dB.

Next, we proposed an interference suppression algo-
rithm for HCT. Interference waves in HCT can not be ne-
glected especially if the number of targets is large. This
residual interference wave is one of the most critical prob-
lems when HCT is applied to multiple targets. The pro-
posed algorithm optimizes a weight function, whose vari-
ables are the instantaneous envelope of HCT and the stan-
dard deviation of waveforms. The proposed algorithm opti-
mizes the weight function by utilizing the transmitted wave-
form instead of the scattered waveform. We showed an ap-
plication example of the proposed algorithm, and clarified
that the proposed algorithm has a sufficient performance in
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suppressing interference waves. Further studies are needed
in order to apply the interference suppression algorithm to
IHCT, which leads to a high-resolution locationing algo-
rithm for multiple targets.

In this paper, we have investigated the performance of
the proposed algorithm only with numerical simulations. An
experimental confirmation of the performance of the algo-
rithm will be an important future task.
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Appendix: Optimum Signal Processing for Coherent
Integrations

We define data vector X(ω) as

X(ω) =


S (ω) + N1(ω)
S (ω) + N2(ω)

...
S (ω) + NM(ω)

 , (A· 1)

where S (ω) is a signal, and Ni(ω) are white Gaussian noises
independent of one another.

We define W(ω) as a Wiener filter which output the
Dirac delta function δ(t). We also define S ab as the covari-
ance matrices between a and b, where a and b are given ma-
trices. For example, S ab = E{aT(ω)b(ω)}. We can express
W(ω) as

W(ω) = S xδ(ω)S −1
xx (ω) (A· 2)

=


E {1(S (ω) + N1(ω))∗}
E {1(S (ω) + N2(ω))∗}

...
E {1(S (ω) + NM(ω))∗}


· S −1

xx (ω). (A· 3)

Here, we define

A = diag{σ2
1, σ

2
2, · · · , σ2

N}, (A· 4)

u =
[

S (ω) · · · S (ω)
]T
. (A· 5)

Then, we can express W(ω) as

W(ω) = S ∗(ω)


1
1
...
1


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·
A + |S (ω)|2


1 · · · 1
...
. . .

...
1 · · · 1



−1

(A· 6)

= S ∗(ω)


1
1
...
1


{
A + uuH

}−1
(A· 7)

By applying the following formula for matrix inversion

(A + uuH)−1 = A−1 − A−1uuHA−1

1 + uHA−1u
(A· 8)

to Eq. (A· 7), we obtain

W(ω) =
1

M∑
j=1

σ−2
j

S ∗(ω)

|S (ω)|2 +


M∑
j=1

σ−2
j


−1

·


σ−2

1
σ−2

2
...
σ−2

M

 (A· 9)

And thus, we see the optimum signal processing require a
weight in proportion to each signal power. This is the reason
why we need a term 1/

√
u(x,Ti) in Eq. (7).
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