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Abstract—Near field radar employing ultrawideband (UWB)
signals with its high range resolution has great promise for various
sensing applications. It enables non-contact measurement of pre-
cision devices with specular surfaces like an aircraft fuselage and
wing, or a robotic sensor that can identify a human body in invis-
ible situations. As one of the most promising radar algorithms, the
range points migration (RPM) was proposed. This achieves fast
and accurate surface extraction, even for complex-shaped objects,
by eliminating the difficulty of connecting range points. However,
in the case of a more complex shape whose variation scale is less
than a pulsewidth, it still suffers from image distortion caused
by multiple interference signals with different waveforms. As a
substantial solution, this paper proposes a novel range extraction
algorithm by extending the Capon method, known as frequency
domain interferometry (FDI). This algorithm combines reference
signal optimization with the original Capon method to enhance
the accuracy and resolution for an observed range into which a de-
formed waveform model is introduced. The results obtained from
numerical simulations and an experiment with bi-static extension
of the RPM prove that super-resolution UWB radar imaging
is accomplished by the combination between the RPM and the
extended Capon methods, even for an extremely complex-surface
target including edges.

Index Terms—Capon method, frequency domain interferometry
(FDI), range points migration (RPM), reference signal optimiza-
tion, super-resolution imaging, ultrawideband (UWB) radars.

I. INTRODUCTION

Itrawideband (UWB) pulse radar with high range reso-
U lution has promise for near field sensing techniques. As
such, it is applicable to non-contact measurement for manufac-
turing reflector antennas or aircraft bodies that have high-pre-
cision surfaces, or to robotic sensors that can identify a human
body, even in an optically blurry vision such as dark smog in
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disaster areas. In addition, it is suitable for surveillance or se-
curity systems for intruder detection or aged care, where an op-
tical camera has the serious problem of privacy invasion in the
case for living places. While various kinds of radar algorithms
have been developed based on the aperture synthesis [1], the
time reversal approach [2], [3], the range migration [4], [5] or
the GA-based solution for the domain integral equations [6],
they are not suitable for the above applications because of the
large amount of calculation time or inadequate image resolu-
tion. To concur the problem in the conventional techniques, we
have already proposed a number of radar imaging algorithms,
which accomplish real-time and high resolution surface extrac-
tion beyond a pulsewidth [7], [8]. As a high-speed and accu-
rate 3-D imaging method applicable to various target shapes,
the range points migration (RPM) algorithm has been proposed
[9]. This algorithm directly estimates an accurate direction of
arrival (DOA) with the global characteristic of observed range
points, avoiding the difficulty in connecting them. The RPM is
based on a simple idea, yet, it offers an accurate target surface
including the complex-shaped target that often creates an ex-
tremely complicated distribution of range points.

However, this algorithm suffers from non-negligible image
distortion in the case of a more complicated target which has
a surface variation less than a pulsewidth, or has many convex
and concave edges. This distortion is caused by the richly in-
terfered signals scattered from the multiple scattering centers
on the target surface. These components are received within
a range scale smaller than a pulsewidth, and are hardly sepa-
rated by the conventional range extraction methods, such as the
Wiener filter. In addition, there are small range shifts due to
deformed scattered waveforms from the transmitted wave. As
the conventional solution for this, the spectrum offset correc-
tion (SOC) method has been proposed [8], which directly com-
pensates the range shift by using the center frequency offset be-
tween the scattered and transmitted waveforms. However, the
SOC is rarely applied to complex-shaped targets, because it re-
quires a completely separated waveform from other interference
signals to calculate an accurate center frequency.

To overcome this difficulty, this paper proposes a novel range
extraction algorithm by extending the frequency domain Capon
method. While the Capon is useful for enhancing the range res-
olution based on FDI [10]-[12], the resolution and accuracy of
this method significantly depend on a reference waveform such
as the transmitted waveform. In general, the scattered waveform
from the target with a wavelength scale differs from the one
transmitted [8], and the range resolution given by the original

0018-926X/$26.00 © 2011 IEEE



KIDERA et al.: SUPER-RESOLUTION UWB RADAR IMAGING ALGORITHM BASED ON EXTENDED CAPON

NN
1 : | / ; | /\

N : :
i z 1 i &

Omni-directional /:
antenna b

¥

7o

05 0 05 1 15

X

Fig. 1. System model in the 2-dimensional model.

Capon method distorts due to this deformation. To outperform
the original Capon, this paper extends the original Capon so that
it optimizes the reference signal based on the simplified wave-
form model. The extended Capon significantly enhances the
range resolution and accuracy, and brings out the utmost perfor-
mance of the RPM algorithm. The results obtained from numer-
ical simulations in the 2-dimensional (2-D) and 3-dimensional
(3-D) models are presented in Sections II and I1I. Finally, an ex-
periment using the UWB module, where the bi-static extension
of the RPM is applied, verifies that super-resolution imaging is
accomplished by the combination between the RPM and the ex-
tended Capon, when using a simple radar constitution.

II. 2-D PROBLEM

A. System Model

Fig. 1 shows the system model in the 2-D model. It assumes
the mono-static radar, and an omni-directional antenna is
scanned along the z-axis. It is assumed that the target has an
arbitrary shape with a clear boundary. The propagation speed
of the radio wave c is assumed to be a known constant. A
mono-cycle pulse is used as the transmitting current. The real
space in which the target and antenna are located, is expressed
by the parameters (z, z). The parameters are normalized by A,
which is the central wavelength of the pulse. z > 0 is assumed
for simplicity. s'(X, Z’) is defined as the received electric field
at the antenna location (z,z) = (X, 0), where Z' = ¢t/(2)) is
a function of time ¢.

B. RPM Algorithm

Various kinds of radar imaging algorithms based on an
aperture synthesis, time reversal or range migration methods,
have been proposed [1]-[6]. As a real-time imaging algorithm,
the SEABED has been developed, which uses a reversible
transform boundary scattering transform (BST) between the
observed ranges and the target boundary [7]. In addition, an-
other high-speed imaging algorithm termed Envelope has been
developed aiming at improving the image stability of SEABED,
by avoiding the range derivative operations [8]. While these
algorithms accomplish fast and accurate imaging for a simple
shaped object, such as trapezoid, pyramid, or sphere shapes,
it is hardly applicable to complex-shaped or multiple targets
because it requires correct connection of range points.

As one of the most promising algorithms applicable to various
target shapes, the RPM algorithm has been proposed [9]. This
method assumes that a target boundary point (z, z) exists on
a circle with center (X, 0) and radius Z, and then employs an
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Fig. 2. True range points (upper) and extracted target points with the RPM
(lower).

accurate DOA (Direction of Arrival 6 in Fig. 1) estimation by
making use of the global characteristics of the observed range
map. The optimum 6, is calculated as,

fopt(q) = arg oax

N,

zq:S(qi)e—{(xfxi>2/2o§(+(979<q,qi>>2/2oz} 0
1=1

where ¢ = (X, 7), q; = (X;,Z;) and s(q) denotes the am-
plitude of the received signal at the range Z and the antenna
location (X, 0). Iy is the number of the range points. 4 (g, ¢;)
denotes the angle from the x axis to the intersection point of
the circles, with parameters (X, 7) and (X, Z;). The constants
oy and ox are empirically determined. The detail of this algo-
rithm is described in [9]. The target boundary (z, z) for each
range point (X, Z) is expressed as © = X + Z cos fpt(g) and
z = Z sinf,p¢(g). This algorithm ignores range points connec-
tion, and produces accurate target points, even if extremely com-
plicated range distribution is given. Thus, the inaccuracy occur-
ring in the SEABED and Envelope can be substantially avoided
by this method.

Fig. 2 shows the example of this algorithm under the assump-
tion that the true range points are given as in the upper side of
this figure. Here, s(q) = 1.0 for every q is set for simplicity.
The lower side of Fig. 2 shows a distinct advantage for this al-
gorithm in that it can accurately locate the target points, even if
a quite complicated range map is given.

C. Performance of RPM Using the Wiener Filter

The performance example of the RPM is presented here,
where the received electric field is calculated by the FDTD
(Finite Difference Time Domain) method. The former study
[9] employs the Wiener filter in order to extract a range point
for each location. The range points (X, Z) are extracted from
the local peaks of s(X, Z’) which are beyond the determined
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Fig. 4. Estimated target points with the RPM and the Wiener filter.

threshold. The procedure is detailed in [9]. The example of this
method for the target shape shown in Fig. 1 is presented. Fig. 3
shows the output of the Wiener filter, and the extracted range
points. The received signals are calculated at 101 locations be-
tween —2.5 < X < 2.5. A noiseless environment is assumed.
Fig. 4 presents the comparison between the true and extracted
range points in this case. It shows that the range points suffer
from the inaccuracy due to the multiple interference echoes
within a range scale of less than a pulsewidth. Fig. 5 shows the
target points, when the RPM is applied to the range points in
Fig. 4. This figure indicates that the inaccuracy of range points
distorts the target image, which is totally inadequate for identi-
fying its actual shape, especially for convex and concave edges.
Furthermore, this range map includes a small error caused
by scattered waveform deformation, whose characteristics are
detailed in [13].

To enhance the accuracy for range points extraction, the spec-
trum offset correction (SOC) algorithm has been developed
aiming at compensating the range shift due to the waveform de-
formation [8]. It is, however, confirmed that the range accuracy
of the SOC is entirely inadequate in such a richly interfered
situation. This is because the range errors in this case are
dominantly caused by the peak shift of the output of the Wiener
filter due to the interferences of multiple scattering echoes.
Furthermore, the SOC is based on the center periods estimation
of the scattered signal, when each signal should be correctly
resolved in the time domain. This is, however, difficult when
the multiple interfered signals are mixed together in a time
scale less than its center period.
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Fig. 6. Waveform comparisons for each antenna location at polygonal target.

D. Proposed Range Extraction Algorithm

To overcome the difficulty described above, this paper pro-
poses a novel algorithm for range points extraction by extending
the frequency domain Capon method. The Capon algorithm is
one of the most powerful tools for enhancing range resolution
based on FDI. It is confirmed, however, that the scattered wave-
form deformation distorts the range resolution and accuracy of
the original Capon method. As a solution for this, the proposed
method optimizes the reference signal used in the Capon. This
method introduces a reference waveform model, based on the
fractional derivative of the transmitted waveform as

Sret(w, @) = (jw)* St (w)* @)

where S, (w) is the angular frequency domain of the transmitted
signal and * denotes a complex conjugate. « is a variable which
satisfies |a| < 1.

The waveform comparison using this simplified model is
demonstrated as follows. Fig. 6 shows the scattered waveform
from the polygonal target received at the different locations,
and the estimated waveforms with the optimized « in (2). This
figure indicates that a scattered waveform differs depending
on an antenna location, or a local shape around the scattering
center [13]. This deformation distorts the resolution and ac-
curacy of the original Capon method, because it employs a
phase and amplitude interferometry in each frequency between
the reference and scattered waveforms. It is confirmed that
an estimated waveform with the optimized « in the previous
model accurately approximates an actual deformed waveform,
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where the range accuracy is estimated of the order of 0.01 A
when using the matched filter.

Based on this waveform model, the observed vector V', («, L)
is defined as

S(wn, L) T

Sref(wnva)’. o

S(wn+M717 L)

Vn 7L =
(a ) Sref(wn-i-M—ba)

3

where S(w, L) denotes the received signal in angular frequency
domain at each antenna location L = (X,0), and M denotes
the dimension of V,,(«, L). Here, in order to suppress a range
sidelobe caused by the coherent interference signals, frequency
averaging is used. The averaged correlation matrix R(«, L) is
defined as

N-M+1
R(a,L)= Y Vu(a,L)VI(a,L) “
n=1

where H denotes the Hermitian transpose. NV is the total number
of the frequency points, and is determined by the maximum
frequency band of the transmitted signal. M < N holds. The
output of the extended Capon scp(«, Z’, L) is defined as

Syt

ol 2 D) = G R D a(2) ®

where a(Z’) denotes the steering vector of Z’ for each fre-
quency

. ’ . ’ . 7 T
a(zl) _ |:e—jw12Z A/c7e—]w22Z A/c’ B .,e_]wMZZ A/c] (6)

Sp is defined as

Sy = \// {a"(Z"R(a,L)"'a(2")} 2 dZ'. (1)

The normalization with Sy enables us to compare the amplitude
of sep(a, Z', L) with respect to «. Then, the local maximum of
Sep(av, Z', L) for o and Z’ offers an optimized range resolution
in the Capon method. That s, sc, (o, Z’, L) performs the highest
range resolution, where the reference waveform most coincides
with the actual scattered waveform. Finally, it determines the
range points (X, 7), which satisfies the following conditions

3scp(a,Z/,L) -0
da -

dsep(,2' L) _ . ®)
RV

Sep(, Z', L) > Bmaxz: Sep(a, Z', L)

where 3 = 0.3 is empirically determined according to the eval-
uations in [9]. Equation (8) is numerically solved by searching
the local maxima of s.,(«, Z’, L) for o and Z'. This algorithm
selects an accurate range point by enhancing the range resolu-
tion of the Capon method with the optimized reference signal.
Each target point (z, z) is calculated from the group of range
points in (1), that is the RPM. This extraction algorithm achieves
accurate range point estimation by compensating for the wave-
form deformation. This is a distinct advantage compared with
the original Capon method.
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Fig. 9. Estimated target points with the RPM and the the original Capon
method.

E. Performance Evaluation in Numerical Simulation

This section presents the examples for each range extraction
method, where the same target as in Fig. 1 is assumed. Here,
N = 60 and M = 20 are set. Fig. 7 shows the output of the orig-
inal Capon method and the extracted range points, which corre-
sponds to « = 0 in (8), that is, the waveform deformation is not
considered. Fig. 8 shows the comparison between the true and
extracted range points in this case. In this figure, the number of
the accurate range points increases compared to Fig. 4, because
the original Capon enhances the range resolution. Fig. 9 shows
the estimated target points by using the original Capon method
as in Fig. 8. This figure also shows that it enhances the accuracy
of the location of imaging points, and the convex edge region
is also accurately located. However, the inaccuracy around the
concave edge region is recognized, and some parts of the target
boundary are still not reconstructed. This is because of the dis-
torted resolution and accuracy of ranges caused by the reference
and actual scattered waveform being in-coincidence.
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Fig. 12. Estimated target points with the RPM and the extended Capon method.

In contrast, Fig. 10 shows s, (v, Z’, L) with the optimized «,
and the range points extracted. Fig. 11 offers the same view as
in Fig. 8. N and M and are the same as in the previous example.
This figure verifies that the extracted range points are accurately
located, and the number of those points increases compared
with the original Capon method. Fig. 12 shows the estimated
target points obtained by the RPM. This figure shows these
points accurately reconstruct the convex or concave edge region,
and offer substantial information for identifying the complicated
target shape, even with convex or concave edges. This is because
the proposed method enhances the resolution of s, (c, Z’, L)
with respect to the scattered waveform deformation. Thereby,
the peaks, which are regarded as the trivial value in the output
of the original Capon, can be detected by optimizing the refer-
ence waveform.

As the comparison for the other methods not specified to the
clear boundary extraction, the SAR (Synthetic Aperture Radar)
method is introduced. This algorithm is the most useful tool for
radar imaging [1], and the near field extension of the SAR is
applied here [9]. Fig. 13 shows the example of the SAR. While
the image produced by the SAR is stable, its spatial resolution
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determined by a half of the pulsewidth is substantially inade-
quate for recognizing the concave or convex edges. This result
also proves the advantage for the proposed method, in terms of
high-resolution imaging.

Here, the quantitative analysis is introduced by ¢ defined as
. Nr) ©)

€ = miantrue_pzeHv (i: L2,...
true

where p,,.. and p. express the locations of the true and es-
timated target points, respectively. Np is the total number of
p.. Fig. 14 plots the number of the estimated points for each
value of e. This figure verifies that the number of the accurate
target points with the proposed method significantly increases
around 0.01 A, compared with other conventional algorithms.
€, that is defined as the mean values of ¢;, for each method is
5.66 x 1072\ for the Wiener filter, 2.18 x 1072\ for the orig-
inal Capon, and 1.23 x 102 for the proposed extended Capon,
respectively. This result quantitatively proves the effectiveness
of the proposed range extraction algorithm.

In addition, the examples in noisy situation are investigated,
where the white Gaussian noise is added to each received signal
as s'(X, Z'). Fig. 15 shows the estimated points with the RPM
and the extended Capon, where the mean S/N is 35 dB. The S/N
is defined as the ratio of peak instantaneous signal power to the
averaged noise power after applying the matched filter with the
transmitted waveform. This figure shows that the target points
around the convex edge region are scarcely extracted, and the
accuracy of the points near the concave edges is distorted. This
is because this algorithm uses the inverse filtering in creating the
observed vector V,,(«, L) in (3), which is sensitive to the white
noise. Furthermore, the scattered signals from the convex edges
are relatively smaller than those from the concave boundaries.
Then, the significant range peaks around the convex region are
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not detected in this case. Fig. 16 plots the number of the esti-
mated points for each value of ¢ in this noisy case. € for each
method are 6.00 x 10~ 2\ for the Wiener filter, 4.37 x 10~2\ for
the original Capon, and 4.44 x 10~2) for the extended Capon.
While the accuracy for the both original and extended Capon
methods deteriorates due to the noises, the superiority to the
Wiener filter is maintained. This is because the range resolution
of the Wiener filter also becomes more inadequate than that in
the noiseless case. In addition, it is a substantial characteristic
of the proposed method that the higher S/N provides the higher
resolution for the obtained images.

Fig. 17 illustrates the relationship between € and S/N for each
method. This figure shows that, in the case of S/N > 30 dB, the
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proposed method accomplishes most accurate target imaging.
While this method requires a high S/N to hold the accuracy, the
actual UWB radar system can achieve this level of S/N. This
is because we assume the near field measurement, where each
receiver obtains an intensive echo from objects even under the
spectrum mask of the UWB signal [14], and random noises in
received signals can be considerably suppressed using coherent
averaging. In contrast, in the case of S/N < 22 dB, the con-
ventional Wiener filter holds its accuracy within 0.08 A, while
the both original and extended Capon methods deteriorate their
accuracies over 0.1 \. This is because these methods are based
on the inverse filtering in creating the observation subvector in
(3). It is our future work to enhance the accuracy in the noisy
situation to modify the definition of V,,(«, L) regarding to the
S/N.

Moreover, the proposed method employs an optimization
process for each received signal and requires around 100 sec
for the range points extraction, whereas the algorithm with the
original Capon method requires only 5 sec. We need to select
an appropriate range extraction method for the different kinds
of applications, whether they require real-time operation or
extremely accurate surface extraction in the high S/N.

III. 3-D PROBLEM

A. System Model

Fig. 18 shows the system model in the 3-D problem. The
target model, antenna, and transmitted signal are the same as
those assumed in the 2-D problem. The antenna is scanned on
the plane, z = 0. It assumes a linear polarization in the direction
of the z-axis. R-space is expressed by the parameter (z,y, z).
We assume z > 0 for simplicity. s'(X,Y, Z’) is defined as
the received electric field at the antenna location (z,y,z) =
(X,Y,0).

B. Extension of Proposed Method to 3-D Model

The extension of the RPM to the 3-D model has been de-
rived in [9]. This assumes that a target boundary point (z, y, z)
exists on a sphere with center (X,Y,0) and radius Z. It cal-
culates (z,y, z) by investigating the distribution of the inter-
section circles between the spheres determined with (XY, Z)
and (X;,Y;, Z;). Each intersection circle projected to the z =
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0 plane becomes a straight line, which is defined as L;. This
method determines the target location (z,y) as

(x(qu)»y(qsd)) = arg max

N, . 2
: 4r..0",a)" _ Dlg*. gy
Zs(qi)exp{— .y ). _ D@ gl

2 2
v 203 207

where ¢*! = (X,Y,Z), ¢¢? = (X;,Y;,Z;), and s(q)
denotes the amplitude of the received signal at the range
Z and the antenna location (X,Y,0). d(=z,y,¢*?,¢>)
denotes the minimum distance between the line L; and
(#,9,0). D(¢*.q}) = VX -X)+(¥ -Y?). ou
and op are empirically determined. Under the assumption
z > 0, the z coordinate of each target point is given by
) = V2? —{a(¢®) - X}? — {y(¢*)) — Y}*. This
algorithm ignores the connecting procedures of a large number
of range points, and can avoid instability due to the failure of
range connections. Thus, it produces accurate target points,
even if an extremely complicated 3-D range map is given. The
detailed characteristic is described in [9].

Furthermore, in the proposed range extraction, each range
point (X, Y, Z) is calculated in (8), where L = (X,Y,0) is re-
defined. Each target point (z, y, z) is calculated from the group
of range points in (10).

C. Performance Evaluation in Numerical Simulation

This section presents an example of the proposed method
using numerical simulation. The mono-static radar is scanned
for —2.5 < z, y < 2.5, where the number of locations on
each axis is 51. The target boundary is assumed as in Fig. 18.
Fig. 19 shows the target points obtained by the RPM in the use
of the Wiener filter for range extraction at —0.75 < z < 0.75.
o4 = 0.1X and op = 0.6 are set. This figure shows that the
estimated target points suffer from severe inaccuracy, and the
produced target boundary is far from the actual one. This is be-
cause the obtained image with the RPM seriously depends on
the accuracy for the range points, which have non-negligible er-
rors due to multiple interfered signals in the same range gate, or
scattered waveform deformation [13].

In contrast, Fig. 20 shows the estimated target points with the
RPM and the original Capon method, where o = 0 is set in (8).
Here, N = 100 and M = 20 are set. This figure proves that
accurate target points estimation is achieved only by enhancing
the range resolution. However, it should be noted that the target
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points around the convex edge region are still inaccurate, be-
cause this method does not consider the waveform deformation
which distorts the resolution and accuracy in range extraction.

Fig. 21 shows the same view as in Fig. 19, when the ex-
tended Capon method is used for range extraction. N and M
are the same as in the previous example. It is confirmed that
this method improves the accuracy for target point extraction,
especially for the edge region. This is because the range reso-
lution of the Capon is significantly enhanced by optimizing the
reference waveform. Here, the deep-set concave region is not
reconstructed, because the direct scattered signals from this re-
gion are not received at any antenna location. This is an inherent
problem under the assumption that a single scattered signal is
used for imaging. Another study offers a promising solution for
this problem by using the multiple scattered waves for imaging
[15].

In addition, Fig. 22 shows the number of the target points for
each sampled ¢;, which is defined in (9). This figure proves that
the proposed method enhances the number of the accurate target
points around € = 0.04\. € for each method are 0.070 X for the
Wiener filter, 0.044 X for the original Capon, and 0.035 A for
the extended Capon. The RPM with the original Capon creates
a few target points with ¢ > 0.3, and these points increase €
compared with that of the proposed method, even if the same (3
in (8) is used. This is because the extended Capon method avoids
the peak lowering around the actual ranges in s(«, X, Z') with
the optimized a.

D. Performance Evaluation in Experiment

This section investigates the experimental study of the pro-
posed algorithm. We utilize a UWB pulse with a center fre-
quency of 3.3 GHz and a 10 dB-bandwidth of 3.0 GHz. The
center wavelength \ of the pulse is 91 mm. The antenna has
an elliptic polarization, of which the ratio of major to minor
axes is about 17 dB, and the direction of the polarimetry axis



KIDERA et al.: SUPER-RESOLUTION UWB RADAR IMAGING ALGORITHM BASED ON EXTENDED CAPON

800 .
£ Wiener filter + RPM ==
a Capon + RPM .......
°g’>600 Extended Capon ___
S + RPM
hat i
2 i
= i
g 400 7
? /

[} 4
kel /

= 200 %

2 7 g

S 17

3

z Vi

(9001

0.01
e/l

Fig. 22. Number of the target points for each e.

Fig. 23. Arrangement for the multiple targets and the small UWB microstrip
patch antenna.

Fig. 24. Estimated target points with the RPM and the Wiener filter in the ex-
periment for —0.5 < y < 0.5.

of the antenna is along the y-axis. The 3 dB-beamwidth of the
antenna is about 90°. One trapezoid and two triangle prismatic
targets are set, and are covered with 0.2 mm thick aluminum
sheet. Fig. 23 illustrates the arrangement of antennas with re-
spect to the multiple targets. The transmitting and receiving an-
tennas are scanned on the z = 0 plane, for —3.3 < z < 3.3 and
—1.1 < y < 1.1, respectively, with both sampling intervals set
to 0.11 A. The separation between the transmitting and receiving
antennas is 1.4 X in the y-direction. The data are coherently av-
eraged 1024 times. The direct scattered signals from the targets
are obtained by eliminating the direct signal from the transmit-
ting antenna.

Fig. 24 shows the extracted target points using the RPM for
—0.5 < y < 0.5, when the Wiener filter is used for range ex-
traction. The mean S/N is around 30 dB. Here, the bi-static ex-
tension of RPM is applied, which is detailed in Appendix A.
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Fig. 25. Estimated target points with the RPM and the original Capon in the
experiment for —0.5 < y < 0.5.
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Fig. 26. Estimated target points with the RPM and the extended Capon in the
experiment for —0.5 < y < 0.5.

o4 = 0.1X and op = 0.6\ are set. This figure proves that the
target points have non-negligible errors, especially around the
trapezoid edge region. In addition, the unnecessary image ap-
pears above the actual boundary due to the range sidelobe of the
Wiener filter. Fig. 25 shows the same view as in Fig. 24, when
the original Capon method is applied to the same received data.
N = 50 and M = 10 are set. In this figure, it is confirmed that
the target points accurately express an actual target surface, in-
cluding the edge region, and the false image due to the range
sidelobe in the Wiener filter is considerably suppressed. This
proves that the frequency domain interferometry in the Capon
method is sufficiently effective in terms of accurate surface ex-
traction. Furthermore, Fig. 26 shows the same view as in Fig. 24,
when the extended Capon is applied for range extraction. While
the image obtained using the proposed method creates an accu-
rate target boundary including edges, there is not a significant
difference between the images with the both original and ex-
tended Capon.

Fig. 27 shows the number of the target points with the sam-
pled ¢; defined in (9) for each method. The methods with the
original and extended Capon obtain an increase in the number
of points with the accuracy around 0.04 \. € for each method are
1.49 x 1071 X for the Wiener filter, 4.53 x 10~ 2 for the original
Capon, and 5.55 x10~2) for the extended Capon. The effec-
tiveness of the extended Capon is not obvious in this case. This
is because this experiment does not offer the sufficient S/N to
recognize the significant discrepancies between the original and
extended Capon. According to the discussion in Section II-E,
the higher S/N is required to confirm the effectiveness of the
extended Capon, and this is an inherent characteristic of this
method. However, the both Capon methods accomplish accurate
imaging including edge region by suppressing the false images
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Fig. 28. Intersection curve C; between two ellipsoids determined by (X, Y, Z)
and (X;.Y;, Z,).

due to the range sidelobe, which are not avoided by the Wiener
filter.

IV. CONCLUSION

This paper proposed a novel range extraction algorithm as
the extended frequency domain Capon method, known as FDI.
To enhance the image quality of the RPM method, including
the case for complicated shaped objects with concave or convex
edges, this method extends the original Capon so that it opti-
mizes the reference signal with a simplified and accurate wave-
form model. It has a substantial advantage that the range reso-
lution is remarkably enhanced, even if the different scattered
waves are mixed together within the range scale less than a
pulsewidth. The results from numerical simulations verified that
the extended Capon method created accurate range points of
the order of 0.01 A, where the RPM offered an utmost perfor-
mance and achieved super-resolution imaging even for the com-
plex-shaped 3-D objects. Finally, in the experiment employing
the UWB module, the RPM with the bi-static extension and the
extended Capon method significantly improved the accuracy of
target surface extraction including the edge boundaries. These
results prove that the proposed method has a great potential for
super-resolution radar imaging with a non-parametric approach.
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APPENDIX
BISTATIC EXTENSION OF RPM

The bi-static extension of RPM in 3-dimensional model is
derived here. At the experimental model assuming in this paper,
the transmitting and receiving antenna locations are defined as
(X,Y +¢&,0) and (X,Y — &,0), where £ is a constant. In the
modified RPM algorithm, d(z',7/,¢*?, ¢3%) is defined as the
minimum distance between (z', ', 0) and the curve C;, which
is projected on z = 0 plane from the intersection curve between

the following two ellipsoids with ¢*? and ¢3¢
—X)? —Y)2 2
(G-XP w=Y? ., 2
72 _¢2 72 72 _¢2
(z—Xi)?  (y—-Yi)? 22
PR 5 573 = 1. 1D
Z2—¢ Z Z2 - ¢
C; is formulated as
¢ 2 2\, 2
—2(X — X))z + 73 (2 -Z})y
Y Y
S (L-5))
+ X - X2+ Y?-Y?2- (Z2° -7}
Y2 Y2
e (jz- ) =0 (12)

In corresponding to the left term in (12), f(x,y) is defined as,

f(z,y) = Az + By* + Cy+ D (13)
where
A —2(X - X;)
2
B 7o (22 = 77)
D = —(2-2)-¢(%-%)

The point (z, y), which minimizes the distance to the curve C;,
is calculated by solving the constrained optimization problem
as

minimize (z -

x/)Z + (y - y/)2 (15)
subject to flz,y)=0 ’
L(z,y) is defined with the Lagrange multiplier v as
Lz,y) = (v =)+ (y —¢/)* + vf(w.y).  (16)
Then, (z,y) satisfies the following conditions
) =
g = 0%, (17)
aL(.’I?,y) — 0

9y
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Solving these equations, the following cubic equation of v is
derived,

A’B*)?
24B (¢ — A) + B (4BD - C?)

— 1%

2
—{4(s’AB + BD) — (A% + 02)} v—2f(x',y")
—0. (18)

2

With the solution v, in (18), the minimum distance is calcu-
lated as

1
d(a:I? yl7 qd7 q?d) =35

Vsol (C' + 2y’ B) }2
2

N\ 2
(Vsolx ) + { (1 T Bllsol)

This derivation is readily extended to the general bi-static or
multistatic model by modifying the definition of the ellipsoids
in (11).
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