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same shape estimation algorithm used in the simu-
lation. In these figures, as before, “true” denotes the
actual contours of the targets, and “image” denotes
the estimated target contours.

Fig. 12 shows the image that was generated using
the UWB Doppler radar interferometric imaging
algorithm. We set = 0:028. As shown in this fig-
ure, multiple false images are present, and therefore
the actual target contours cannot be identified. The
RMSE is 63 mm, and the total number of points
that was estimated is 27653.

In Fig. 13, we show the image that was generated
using the combination of the UWB Doppler radar
interferometric imaging algorithm and the false im-
age rejection method in the experiments. We set

= 0:028, Vmax = 0:62 m/s, R = 0:060 m,
and = 0:17. Most of the false images have been
removed in this case, and the imaging accuracy
seems to have improved. However, some false im-
ages persist at locations away from the actual points
of interest. The RMSE is 50 mm, and the total
number of points that was estimated is 8990. When
compared with the image that was obtained using
the UWB Doppler radar interferometric imaging
algorithm alone, the RMSE is improved by 21%,
and the number of estimated points is reduced by
67%.

Fig. 14 presents the image that was generated by
the proposed method in the experiments. Parameters
, Vmax» Re, and are the same as in the case
with Fig. 13, and we set = 0:925. The RMSE is
26 mm in this case, and the total number of points
that was estimated is 11016. The imaging accuracy
is obviously improved when compared with that
shown in both Fig. 12 and Fig. 13. When compared
with the image that was obtained using the UWB
Doppler radar interferometric imaging algorithm
alone, the RMSE is improved by 59%, while the
total number of points estimated is reduced by only
60%. The proposed method thus also succeeds in
producing high-resolution images while suppressing
the reduction of data usage in the experiment.

Differences in the imaging accuracy of the pro-
posed method can be observed between the simula-
tion Fig. 8 and measurement Fig. 14. This difference
is considered to have been partly caused by exces-
sive phase noise in the radar system that was used
in our study; each of the four receivers uses its own
local oscillator, and these do not use the same local
reference signal.
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Fig. 9. Photograph of the six targets and the radar system used in the
measurements. The targets are 6.0 cm in diameter and 30 cm high.
The targets are located on two turntables that rotate at 0.55 Hz.
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Fig. 10. Power of the echo signals from the moving cylindrical
targets in the experiments. The echo signals are in the 0.6- to 0.72-m
range.

VI. CONCLUSION

In this paper, we proposed a new UWB radar
imaging algorithm that uses a combination of the
UWB Doppler radar interferometric imaging algo-
rithm, a false image detection and rejection method,
and the Capon method. First, we explained the
operation of each of these three methods. Then,
we explained the disadvantages of the conventional
approach, which include false image generation,
reduced imaging reliability, and the complexity of
the required system. Next, we evaluated the imaging
accuracy of the proposed method through simula-
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Fig. 11. Spectrogram acquired using the STFT from the echo signals
shown in Fig. 10. The Doppler velocities of the six targets were
extracted and were found to change periodically.
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Fig. 12. Image estimated using UWB Doppler radar interferometric
imaging algorithm only and the experimental data. (RMSE: 63 mm)
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Fig. 13. Image estimated using UWB Doppler radar interferometric
imaging algorithm combined with false image rejection method and
the experimental data. (RMSE: 50 mm)
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Fig. 14. Image estimated using proposed algorithm and the experi-
mental data. (RMSE: 26 mm)

tions. In these simulations, we assumed that multiple
targets were moving in the same range bin. The
proposed method could generate images with high
accuracy of 4.2 mm, and could improve the imaging
accuracy by 55% when compared with the image
that was acquired using the combination of the
UWB Doppler radar interferometric imaging algo-
rithm and the false image rejection method. Finally,
we evaluated the imaging accuracy of the proposed
method experimentally. The proposed method could
generate images with high accuracy of 26 mm, and
could improve the imaging accuracy by 47% when
compared with that of the image generated using
the combination of the UWB Doppler radar inter-
ferometric imaging algorithm and the false image
rejection method. In both the simulations and the
experiments, the proposed method produced more
accurate images than the conventional methods.
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